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Abstract

Although Markov chain Monte Carlo (MCMC) is useful
for generating samples from the posterior distribution, it of-
ten suffers from intractability when dealing with large-scale
datasets. To address this issue, we propose Hierarchical Ini-
tialized Alternating Back-propagation (HiABP) for efficient
Bayesian inference. Especially, we endow Alternating Back-
propagation (ABP) method with a well-designed initializer
and hierarchical structure, composing the pipeline of Initial-
izing, Improving, and Learning back-propagation. It saves
much time for the generative model to initialize the latent
variable by constraining a sampler to be close to the true
posterior distribution. The initialized latent variable is then
improved significantly by an MCMC sampler. Thus the pro-
posed method has the strengths of both methods, i.e., the ef-
fectiveness of MCMC and the efficiency of variational infer-
ence. Experimental results validate our framework can out-
perform other popular deep generative models in modeling
natural images and learning from incomplete data. We fur-
ther demonstrate the unsupervised disentanglement of hierar-
chical latent representation with controllable image synthesis.

Introduction
Alternating Back-propagation (ABP) (Nijkamp et al. 2019;
Han et al. 2017) is a newly-introduced generative model that
learns a generator mapping latent variables to observations.
It performs an EM-like algorithm that infers latent variable
and updates generator parameters alternately, following the
tradition of alternating operations in unsupervised learning,
such as alternating linear regression in the EM algorithm for
factor analysis, alternating least squares algorithm for matrix
factorization (Kim and Park 2008), and alternating gradient
descent algorithm for sparse coding (Olshausen and Field
1997). As a powerful tool which is asymptotically exact to
infer latent variables based on the joint posterior distribu-
tion of both the latent variables and observations, Markov
chain Monte Carlo (MCMC) methods such as Langevin dy-
namics or Hamiltonian Monte Carlo (HMC) (Neal 2012) are
typically adopted for inference. However, MCMC sampling
takes a great amount of time to converge, thus making it dif-
ficult to cope with large-scale training data.
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An alternative to MCMC sampling is Variational Infer-
ence (VI) (Bishop 2006), which is typically more computa-
tionally efficient. Variational Auto-encoder (VAE) (Kingma
and Welling 2014), a type of generative model adopting VI
strategy, proves that the cost of VI can be amortized with
an inference model and thus could quickly approximate the
posterior over the local latent variables. Despite the success
of VAE, the improved speed comes at many significant costs,
such as the inability of the approximation family to capture
the true posterior and the asymmetry of the true distribution
under penalization of the KL divergence with too-light tails.

In this paper, we explore the possibility of marrying the
high efficiency of the inference network with the exact ap-
proximation of ABP method in generative modeling. To
achieve this, we propose to take an inference model as
an initializer for ABP method, dubbed initialized alternat-
ing back-propagation (IABP). The pipeline is composed
of Initializing, Improving and Learning back-propagation,
which iterates the following three steps: (1) Initializing la-
tent variable for each training example by parameterized
inference model; (2) Improving the continuous latent fac-
tors by Langevin dynamics; and (3) Learning both infer-
ence model and generator given the improved latent factors.
The parameter update in the first step is typically performed
using Maximum Likelihood estimation (MLE) in unsuper-
vised learning. The MLE provides only a point estimate of
the fitted model parameters, while the second step recov-
ers the entire posterior distribution of the model parameters
given the data by Langevin dynamics, providing additional
information such as parameter uncertainty and correlations.
Since the inference time in the first step is negligible com-
pared to the Langevin search time, our model improves the
efficiency of ABP model to a great extent. In addition, as
the iteration of updating inference model goes, Langevin
dynamics obtains a better starting point, which improves
its quality as well. Thus we seamlessly combine the amor-
tized inference model and Langevin strategy in our proposed
IABP, which makes all the sub-components cooperate in a
harmonious manner and thus promotes each other well.

To sum up, this work makes the following contributions:

1 We introduce a novel framework Initialized Alternating
Back-propagation (IABP), which consists of Initializing,
Improving and Learning back-propagation. Our frame-
work integrates both fast thinking (through qφ) and slow



STEP T 1 2 3 4 5 6 7 8 9 10

MSE 0.783 0.120 0.054 0.042 0.038 0.033 0.030 0.029 0.028 0.028

ABP (NON-
PERSISTENT)

MSE 0.074 0.044 0.036 0.030 0.028 0.025 0.025 0.025 0.025 0.025

IABP (OURS)

Figure 1: Informative initialization in IABP can dramatically reduce the number of Langevin steps T needed for convergent
Maximum Likelihood (ML) learning. MSE: Mean Square Error between the actual observations and the values predicted by
the model.

thinking (through ABP inference). It also combines the
bottom-up model (inference model) as well as the top-
down model (Langevin dynamics).

2 To verify the scalability of the proposed model for large-
scale practical problems, we present that the IABP frame-
work can learn realistic generative models of natural im-
ages. It can also learn from incomplete or indirect data.

3 We extend IABP to a hierarchical latent model called Hi-
erarchical Initialized Alternating Back-propagation (Hi-
ABP). This model can learn in an unsupervised man-
ner the hierarchical latent representation, by disentangling
different layers of latent code.

Related Work
Hybrid Methods: Variants of MCMC and VI Varia-
tional auto-encoders (VAEs) (Kingma and Welling 2014)
are Deep Gaussian Models trained by using mean-field VI.
A more flexible variational family called normalizing flows
(NFs) is used by (Rezende and Mohamed 2015) to improve
over VAEs. However, the main limitation of VAEs and NFs
is the bias present in their variational approximations. This
bias can be quite high, even in the case of NFs, since the
transformations have to be rather simple to ensure invertibil-
ity and to reduce computational costs. MCMC methods are
less popular than VI for the reason that they are more com-
putationally expensive. Many recent works seek a better bal-
ance between efficiency and bias by combining MCMC and
VI. In Hoffman (2017), the gradient of the true likelihood is
directly approximated by using Fisher’s identity and HMC
to obtain approximate samples from pθ(z|x). However, the
MCMC bias can be significant when one has multimodal la-
tent posteriors and is strongly dependent on both the initial
distribution and θ. HVAE (Caterini, Doucet, and Sejdinovic
2018) reduces variational bias by optimizing an ELBO spec-
ified in terms of the tractable joint density of short MCMC
chains, but the proposed ELBO becomes looser and looser as
the chain grows longer since the auxiliary momentum vari-
ables are sampled only once at the beginning of the chain,
which reduces the empirical performance of HMC. Intro-
duced in (Ruiz and Titsias 2019), Variational Contrastive

Divergence (VCD) is a new divergence that replaces the
standard Kullback-Leibler (KL) divergence used in VI. The
wake-sleep algorithm (Hinton et al. 1995) does not corre-
spond to the optimization of (a bound of) the marginal like-
lihood. In contrast to these methods, our approach is based
on maximum likelihood, which is theoretically the most ac-
curate estimator, following the tradition of alternating oper-
ations in unsupervised learning.

Unsupervised Hierarchical Latent Disentanglement.
Hierarchical deep generative models (Rezende, Mohamed,
and Wierstra 2014) follow hierarchy of latent variables z =
{z1, ...,zL}, in addition to the observed variables x is de-
fined as Equation (1) using chain rule:

p(x, z1, ..., zL) = p(x|z>0)ΠL−1
l=1 p(z

l|z>l)p(zL), (1)

where z>l indicates zl+1, ...,zL. As is a very challenging
task, training such a hierarchical deep generative model in
an unsupervised manner usually focuses on learning a hier-
archy of latent variables by stacking single layer models on
top of each other (Sø nderby et al. 2016). Reasonable hier-
archical network structure can be, by itself, highly effective
at learning disentangled representations.

Method
In the section, we first introduce the preliminary about Alter-
nating Back-propagation and its variants. Then, we describe
the design of a particular initializer and Langevin dynam-
ics. Finally, we introduce our generic single stochastic layer
IABP framework and the extension of IABP to hierarchical
latent variable model HiABP.

Preliminary
Alternating Back-propagation (ABP). In ABP
paradigm (Nijkamp et al. 2019; Han et al. 2017; Xie
et al. 2019; Han et al. 2019), a generator network is learned
by iterating the following two steps: (a) inferring the latent
variables by Langevin dynamics that are sampled from the
posterior distribution of the latent variables. (b) updating
the generator parameters based on the inferred latent
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Figure 2: IABP Framework. Different from vanilla ABP (z0 ∼ N (0, 1)), IABP iterates the following three steps: (1) parame-
terized qφ quickly generates initial latent variable z0; (2) Improving latent variable via T -step Langevin dynamics starting from
z0 to obtain zT ; (3) Updating qφ and pθ (dashed arrow part). qφ is typically updated using Maximum Likelihood estimation
(MLE) in unsupervised learning. The MLE provides only a point estimate of the fitted model parameters, while step (2) recov-
ers the entire posterior distribution of the model parameters given in the data by Langevin dynamics. Since the initialization is
improved after each qφ update, the quality of the Langevin dynamics’ samples also improves.

variables. Both steps involve gradient computations based
on back-propagation, thus it is called as “alternating back-
propagation”. Note that in the training stage, in step (a),
for observed example x, the first round of Langevin starts
from random noise N (0, 1). In later rounds of Langevin
dynamics, instead of starting from N (0, 1), vanilla ABP
starts from the value obtained in the previous round.
This is usually called persistent chain in the literature.
In (Nijkamp et al. 2019), in step (a), they are essentially
doing non-persistent ABP, meaning that in each round of
Langevin dynamics, they always starts from random noise
N (0, 1), then doing the finite-step (e.g., 20-step) Langevin
updating. Xing et al. (Xing et al. 2019; Xing et al. 2020)
study the unsupervised disentanglement by extending the
ABP model to infer the Langevin dynamics of two groups
of independent latent variables for the representation of
shape and appearance. The hierarchical compositional
model is explored in (Xing et al. 2020), under the engine of
ABP, by unifying the top-down generator network and the
sparse coding model. Nijkamp et al. (Nijkamp et al. 2020)
extend the ABP model with the hierarchical latent variables.
Recently, a joint training scheme is proposed (Han et al.
2020), where the latent energy-based model (EBM) serves
as a critic of the generator model, while the generator model
and the inference model in VAE serve as the approximate
synthesis sampler and inference sampler of the latent EBM.

Informative Initializer for IABP
Different from the previous work, the step of the Langevin
dynamics in our method is initialized from the values of
the latent variables produced in qφ network, which is called
Informative Initializaton in literature. It is impractical to
run long chains to sample from pθ(z|x). Different from
non-persistent initialization starting from noise, or persis-
tent initialization from the value obtained from the previous
round, we propose to find an optimal informative initializer
qφ to closely approximate the stationary distribution of the
Langevin dynamics.

z0 = µφ(x) + σφ(x)� ε, ε ∼ N (0, 1). (2)

Suppose our inference network qφ(z|x) with parameter φ
is N (µφ(x), σ2

φ(x)). � indicates the element-wise prod-
uct. z0 is generated as Equation (2) by the current infer-
ence model qφ(z|x) using reparameterization trick for each
training observation. Experiments demonstrate that such in-
formative initialization can dramatically reduce the number
of Langevin steps needed for convergent ML learning (see
Figure 1).

Langevin Dynamics
Langevin dynamics (Neal 2012) in Equation (3) is a
stochastic sampling counterpart of gradient descent used in
our framework for sampling from pθ(z|x), which iterates

zt+1 = zt+
s2

2

∂

∂z
log pθ(zt|x) + sεt, t = 1, ..., T, (3)

where εt ∼ N (0, 1) is Gaussian noise injected in Langevin
sampling, t indexes the time step of Langevin dynamics, s
is the Langevin step size, sεt is the white noise diffusion
term in Langevin dynamics to create randomness for sam-
pling from pθ(z|x). For small step size s, the marginal dis-
tribution of zt will converge to pθ(z|x) as t→∞ regardless
of the initial distribution of z0. More specifically, let qt(z)
be the marginal distribution of zt of Langevin dynamics,
thenKL(qt(z)||pθ(z|x))→ 0 monotonically, that is, by in-
creasing t, KL(qt(z)||pθ(z|x)) is reduced. − log pθ(z|x)
is the gradient descent term consisted in Langevin dynam-
ics. In the case of our generator network gθ, it amounts
to the gradients descent on penalized reconstruction error
||z||2/2 + ||x − gθ(z)||2/2σ2, which is the negative log-
likelihood of Gaussian distribution. We get improved latent
variable zT after T steps Langevin updates from z0.

Learning Procedure for IABP
We design a simple and easily reproducible pipeline for
single-layer IABP, as shown in Figure 2. Let pdata(x)
be the data distribution that generates the example x.
The learning of parameters θ of pθ(x) can be based on
minθKL(pdata(x)||pθ(x)). If we observe training exam-
ples {xi, i = 1, ..., n} ∼ pdata, the learning procedure
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Figure 3: Inference and generative models for LVAE (Sø nderby et al. 2016) (left), VLAE (Zhao, Song, and Ermon 2017)
(middle) and HiABP (right). Circles indicate stochastic nodes, and squares are deterministically computed nodes. Solid lines
with arrows denote conditional probabilities; solid lines without arrows denote deterministic mappings; dash lines indicate
regularization to match the prior p(z). LD represents Langevin dynamics.

Algorithm 1 Hierarchical Initialized Alternating Back-propgation (HiABP)

Require: Latent layer L, pθ learning rate ηθ, qφ learning rate ηφ, observed examples {x(i)}ni=1, batch size m, number of
Langevin steps T , step size s.

Ensure: Weights θ,φ
θ,φ← Initialize parameters.
repeat

Draw observed examples {x(i)}mi=1.
Initializing Alternating-backpropagation: For ` = 1, ..., L, i = 1, ...,m, draw latent vectors z(i),`0 according to Equa-

tion (7).
Improving Alternating-backpropagation: {z(i)0 }mi=1 = {z(i),00 , z

(i),1
0 , ...,z

(i),L
0 }mi=1, infer {z(i)T }mi=1 by T -steps of

dynamics in Equation (3) with step size s.
Learning Alternating-backpropagation: Update θ with learning rate ηθ according to Equation (4). Update φ with

learning rate ηφ according to Equation (5).
until convergence of parameters (θ,φ)
return θ,φ

would proceed as the following iteration: (1) Learning gen-
erator parameter θ using zT by Equation (4). (2) Learning
inference net parameter φ by Equation (5), which encour-
ages qφ to approximate the desired target distribution.

θ ← θ + ηθ
1

n

n∑
i=1

E
qθ(z

(i)
T

|x(i))

[
∂

∂θ
log pθ(x

(i),z
(i)
T )

]
, (4)

φ← φ−ηφ
1

n

n∑
i=1

∂

∂φ

[
||z(i)

T − µφ(x
(i))||2

2σ2
φ(x

(i))
+ 0.5 log σ2

φ(x
(i))

]
,

(5)
where ηθ is the learning rate for pθ, ηφ is the learning rate

for qφ. The gradients in both steps are computed by back-
propagation. IABP can be regarded as a single-layer HiABP
(L = 1), of which the learning procedure of is summarized
in Algorithm 1.

Note that IABP actually integrates both fast thinking
(through qφ) and slow thinking (through ABP inference).
It also combines the bottom-up model (inference model) as
well as the top-down model (Langevin dynamics). Neither
of the previous VAE methods nor vanilla ABP models have
this design.

Hierarchical Initialized
Alternating-backpropagation (HiABP)
Training the hierarchical latent variable models using
MCMC posterior sampling or VAE is challenging. On one
hand, the starting point in MCMC posterior sampling is al-
ways random (Gaussian or Uniform), which is not informa-
tive, and the Gaussian parametrized generator model is not
as expressive as neural network approximator in Equation
(6) which can implicitly represent many complicated distri-
butions other than Gaussian. On the other hand, VAE uses
an encoder parametrized by Gaussian to approximate the in-
tractable posterior of the generator model, which is inaccu-
rate.

We propose to use the learned initializer for ABP infer-
ence on hierarchical latent variable models. Assume p(z) =
p(z1, z2, ...,zL) to be the factorized gaussian prior, genera-
tor network is defined to be:

z̃L = fL(zL),

z̃` = f `(z̃`+1, z`), ` = 1, ..., L− 1,

x ∼ r(x;f0(z̃1),

(6)

where f is defined as a nonlinear function (parameterized
by neural network) on concatenated vectors, and r is the



METHODS
MNIST (LECUN ET AL. 1998) SVHN (NETZER ET AL. 2011) CELEBA (LIU ET AL. 2015)
MSE↓ FID↓ MSE↓ FID↓ MSE↓ FID↓

VAE 0.0202 - 0.0192 48.47 0.0317 69.90
LVAE (L=4) 0.0185 - 0.0178 45.08 0.0286 67.60
VLAE (L=4) 0.0184 - 0.0173 45.89 0.0282 66.81

ABP(NON-PERSISTENT) 0.0192 - 0.0190 48.78 0.0289 69.31
ABP(PERSISTENT) 0.0183 - 0.0181 44.86 0.0283 51.80

IABP [E] (L = 1) 0.0195 - 0.0204
44.53

0.0314
49.52IABP [E+L] (L = 1) 0.0180 0.0178 0.0279

HIABP [E+L] (L = 2) 0.0174 - 0.0168 44.29 0.0244 47.51
HIABP [E+L] (L = 3) 0.0162 - 0.0145 43.91 0.0201 46.29
HIABP [E+L] (L = 4) 0.0151 - 0.0124 43.22 0.0183 45.13

Table 1: Mean Square Error (MSE) ↓ and Frechét Inception Distance (FID) ↓ on different datasets.

Original
Input

VAE

ABP

HiABP
(E+L)

Figure 4: Faithful Reconstruction of SVHN Examples Figure 5: Unconditional Generation of HiABP [E+L]
(L = 4) on CelebA

distribution family parameterized by f0(z̃1). This design of
channel-wise noise adding could be naturally used for en-
forcing different levels of expressiveness of neural networks.
For inference network qφ(z|x), we use Gaussian reparame-
terization in different levels:

h0 ≡ x,
h` = g`(h`−1),

z`0 ∼ N (µ`(h`),σ`(h`)),

(7)

where ` = 1, 2, ..., L, g`,µ`,σ` are neural networks.
Specifically, we have both the multi-layer generator model
and the encoder network. For the generator model, we use
the structure in Equation (6). For the encoder, we use a sim-
ilar structure as in VLAE. However, unlike VLAE, which
uses an encoder to directly approximate the generator pos-
terior, we use an encoder only to provide the informative
starting point for our Langevin dynamics. The difference be-
tween our model and other related models is illustrated in
Figure 3.

Experiments
In this section, we apply IABP and HiABP to a series of
tasks by demonstrating (1) faithful reconstruction of ob-
served examples, (2) unconditional generation, (3) learning

MASK
TYPE

PEPPER &
SALT NOISE

REGION
MASK

(10× 10)

REGION
MASK

(20× 20)

ERROR 0.0502 0.0487 0.0513

Table 2: Quantitative Evaluation for Learning from Incom-
plete Data on CelebA.

from incomplete data, and (4) unsupervised hierarchical la-
tent disentanglement (conditional generation). We empha-
size the simplicity of IABP and HiABP framework.

Experimental Setup
Dataset. Three datasets are employed - MNIST, Street
View House Number (SVHN) (Netzer et al. 2011), and
CelebA (Align & Cropped version) - with the respective
training and test partitions. These datasets are expected to
present increasing levels of challenge: MNIST has handwrit-
ten decimal single digits, without color, SVHN has multi-
digit street numbers in several styles and colors, and CelebA
has human faces in color. We code all models in Python 3.6,
SciPy 1.0.0, and Tensorflow 1.15. Experiments are run on
NVIDIA GTX Titan X.
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Figure 6: Recovered images on CelebA for varying occlusion masks. From top to down: (1) Pepper & Salt Noise, (2) Region
Maks (20× 20).

Training Details. For multi-layer HiABP, we have z =
{z`, ` = 1, ..., L} for which layer L is the top layer, and
layer 1 is the bottom layer close to x. In our case, µ`()
and σ`() are the mean vector and the diagonal variance-
covariance matrix of z` respectively, and f ` and g` are de-
terministic layers. f ` is defined as two subsequent deconv2d
layers with Leaky-ReLU (leaky factor 0.1) activation func-
tions. µl and σl are linear layers to project to dimensional-
ity of zl. The final deterministic block r is a deconv2d layer
with sigmoid() activation function projecting to the desired
dimensionality of x. All (de)convolutional layers had stride
= 2. IABP is a single-layer version HiABP (L = 1).

We train the models with 3× 105 parameter updates opti-
mized by Adamax (Kingma and Ba 2015). The learning rate
ηφ = ηθ = 0.0003. If not stated otherwise, we use Langevin
inference steps T = 15, σ = 0.3, step size s = 0.15, batch
size m = 100.

Reconstruction and Unconditional Generation
We evaluate the accuracy of the learned inference dynamics
qφ(z|x) by reconstructing test images. In contrast to tra-
ditional MCMC posterior sampling with persistent chains,
IABP with small T allows for efficient learning on the train-
ing examples. The same dynamics can be also adopted for
the test examples. The increase in the number of layers con-
tributes to the quality of reconstruction, which is quantita-
tively confirmed by a consistently lower Mean Square Er-
ror (MSE) in Table 1. IABP [E] and IABP [E+L] both in-
volve encoder (E) and Langevin dynamics (L) during train-
ing, and the only difference is with or without Langevin dy-
namics in the test. The difference in reconstruction errors
between IABP [E] and IABP [E+L] reveals the effective-
ness of Langevin dynamics. Despite its simplicity, HiABP
is competitive to elaborate means of inference in VAE mod-

els. Figure 4 compares the reconstructions by VAE, non-
persistent ABP and HiABP [E+L] on SVHN. The fidelity
of reconstructions by HiABP appears qualitatively improved
over VAE.

To quantify the realism of our generated images and how
well they capture the internal statistics of the training image,
we evaluate the fidelity of unconditional generated exam-
ples on various datasets. To distinguish from unsupervised
hierarchical latent disentanglement (conditional generation)
in the following section, conventional generation task (ran-
domly sampled from N (0, 1) without condition on layer-
wise latent code) is called unconditional generation in this
paper. Figure 5 depicts samples generated by HiABP for
CelebA. Table 1 compares the Frechét Inception Distance
(FID) (Heusel et al. 2017) with Inception v3 classifier on
40, 000 generated examples. Note that the only difference
between IABP[E+L] and IABP[E] is whether the inference
process contains Langevin dynamics or not, while there is no
difference in the generation process between IABP [E] and
IABP [E+L] and thus their FID results are the same. The
generated images also match the true data well and visually
appear better than these competing approaches.

The Impact of Langevin Steps
Langevin step number T has an important effect on the accu-
racy of sampling. To evaluate the impact of Langevin steps
for HiABP, we take SVHN as an example and fix Langevin
step number to T during training and evaluation. After train-
ing for 3 × 105 parameter updates, the model is evaluated
with Langevin step number T . The influence of the Langevin
step number T quantified by reconstruction Mean Square
Error (MSE) on SVHN dataset is reported in Tables 3. In-
creasing the number of inference steps T up to 15 steps re-
sults in relative significant improvements, while T > 15 ap-



Figure 7: HiABP on MNIST. Each sub-figure corresponds to images generated when fixing latent code on all layers except for
one. From left to right, the randomly sampled layer goes from the bottom layer to the top layer. Right panel: the third layer
encodes digit identity; Center panel: the second layer encodes digit width; Left panel: the first (bottom) layer encodes stroke
width.

LANGEVIN STEPS T = 5 T = 10 T = 15 T = 30

MSE ↓ 0.0216 0.0183 0.0168 0.0166

Table 3: The Effect of Different Langevin Steps T on
HiABP-SVHN.

pears to affect the scores only marginally.

Learning from Incomplete Data
Our method can ”inpaint” occluded image regions. To re-
cover the occluded pixels, the only required modification of
Equation (2) involves the computation of ||x− gθ(z)||2/σ2.
For partially observed images, we only compute the sum-
mation over the observed pixels. We evaluate our method
on 10, 000 images randomly selected from CelebA dataset.
Experiments with two types of occlusions are designed: (1)
Pepper & Salt occlusion, where we randomly place masks
on the 64 × 64 image domain to cover roughly 20% of pix-
els. (2) Region mask occlusion, where we randomly place
a 10 × 10 or 20 × 20 mask on the 64 × 64 image domain.
Figure 6 depicts test images taken from CelebA for which
a mask randomly occludes pixels in various occlusion pat-
terns. We define ”recovery error” as per-pixel difference be-
tween the original image and the recovered image on the
occluded pixels. Note that the recovery errors here are not
training errors, because the intensities of the occluded pixels
are not observed in training. Quantitative results are reported
as Table 2.

Unsupervised Hierarchical Latent
Disentanglement
Convolution Neural Network (CNN) is prevailing in the past
few years, and researchers put great effort to open its black
box and found empirically that each layer tends to learn
more abstract features. But CNN is a bottom-up process in
nature which is not top-down generative. An important ques-
tion is hence to directly learn hierarchical features from gen-
erative models.

Hierarchical Initialized Alternating Back-propagation
(HiABP) is able to unsupervised learn highly interpretable
and disentangled hierarchical features on natural image
datasets with no task-specific regularization or prior knowl-
edge, which goes far beyond the capacity of previous ABP
methods. Specifically, due to the fact that different datasets
have different number of semantic levels, we use L = 3
for HiABP-MNIST. In Figure 7, we visualize HiABP (L =
3) unsupervised hierarchical latent disentanglement (con-
ditional generation) results on MNIST. The visualizations
are generated by randomly sampling the latent code for one
layer while freezing the latent code in other layers. From
the visualization, we see that the three layers encode stroke
width, digit width, and digit identity, respectively. These fea-
tures are highly disentangled. For example, the latent code at
the bottom layer controls stroke width. Modifying the code
from the bottom layer while keeping the other layers fixed
will generate a set of images that have different stroke width
in general. Sampling latent codes at the second layer will
control the digit width. Sampling latent codes at the third
layer will control digit identity.

Conclusion

In this paper, we propose a novel Hierarchical Initialized
Alternating Back-propagation (HiABP) framework for un-
supervised representation learning. We consider an alterna-
tive to learning structured features by leveraging the expres-
sive power of a neural network, which substantially improve
the capacity of previous ABP methods. Experiments demon-
strate its promising practical value on unconditional genera-
tion, reconstruction, learning from incomplete data, and un-
supervised disentangled representation learning. With both
high efficiency and exactness, our work paves the way for
future down-stream applications.
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