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A B S T R A C T

Measuring the human sense of place and quantifying the connections among the visual features of the built
environment that impact the human sense of place have long been of interest to a wide variety of fields. Previous
studies have relied on low-throughput surveys and limited data sources, which have difficulty in measuring the
human perception of a large-scale urban region at flexible spatial resolutions. In this work, a data-driven ma-
chine learning approach is proposed to measure how people perceive a place in a large-scale urban region.
Specifically, a deep learning model, which has been trained on millions of human ratings of street-level imagery,
was used to predict human perceptions of a street view image. The model achieved a high accuracy rate in
predicting six human perceptual indicators, namely, safe, lively, beautiful, wealthy, depressing, and boring. This
model can help to map the distribution of the city-wide human perception for a new urban region. Furthermore,
a series of statistical analyses was conducted to determine the visual elements that may cause a place to be
perceived as different perceptions. From the 150 object categories segmented from the street view images,
various objects were identified as being positively or negatively correlated with each of the six perceptual
indicators. The results take researchers and urban planners one step toward understanding the interactions of the
place sentiments and semantics.

1. Introduction

For decades, as human settlement in modern cities has changed and
been reshuffled, places in the cities have accordingly been reshaped and
gradually grown unequally in terms of their location, physical setting,
and the groups of people that live in them (Salesses, Schechtner, &
Hidalgo, 2013). Place, defined as “…spatial locations that have been
given meaning by human experiences” (Tuan, 1977), has been a fun-
damental component of everyday life (Morison, 2002) and has influ-
enced people’s cognition and perceptions in the stream of experience
(Goodchild, 2011; Tuan, 1977). In particular, the sense of place refers
to human perceptions and nebulous meanings associated with a place.
Measuring the human sense of place can potentially enrich place se-
mantics, which will further help researchers understand the underlying
urban heterogeneity patterns and reveal the impacts of urban function.
Indeed, learning how to gather knowledge about physical settings and

the visual information of a place that affects the experience of observers
has long been of interest to a wide variety of fields (Kaplan & Kaplan,
1989; Lynch, 1960; Nasar, 1997; Tuan, 1977). Previous studies were
conducted by the traditional data collection methods, such as inter-
views and questionnaires (Cresswell, 1992; Montello, Goodchild,
Gottsegen, & Fohl, 2003), which are laborious, costly and time-con-
suming. These methods constrain the scalability to a small research
area. The size of modern cities increases and the physical appearance of
cities changes rapidly. Developing a comprehensive body of knowledge
about the streets, places, and cities is becoming even more difficult but
more meaningful than ever before. It is of great significance for re-
searchers, urban planners and decision makers to understand how ci-
tizens perceive and evaluate places in a large-scale urban region at a
high resolution. This work makes a contribution by enhancing the un-
derstanding of human perceptions of places in a large-scale urban en-
vironment in an automatic and efficient way by using machine learning
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and street-level imagery.
Due to the rapid development of map services and volunteered

geographic information (VGI) (Anguelov et al., 2010; Goodchild, 2007;
Liu et al., 2015), a massive amount of geo-tagged images have been
compiled and made publicly available that can describe every corner of
a city. Street-level imagery has enabled the development of new ap-
proaches to observe, perceive, and understand the built environment. In
addition, great progress has been made on recent advance of computer
vision technique for recognizing the image content by deep learning,
which has attracted much attention and achieved great success in
multiple fields due to its powerful ability in automatic image feature
learning and representation (Hinton et al., 2012; He, Gkioxari, Dollár, &
Girshick, 2017; LeCun, Bengio, & Hinton, 2015).

In this study, a deep learning based approach is first proposed to
model and predict human perceptions of the physical setting of a place.
The approach is able to predict the six human perceptual indicators
accurately, namely, safe, lively, boring, wealthy, depressing, and
beautiful for a new urban region. Second, we investigate the connec-
tions between urban visual elements and perceptions using multivariate
regression analyses, and tried to determine “which visual elements may
cause a place to be perceived as a specific perception”. Various visual
elements were identified to be positively or negatively correlated with
perceptual indicators through statistical analyses. The results take re-
searchers and urban planners one step toward understanding place
sentiments and semantics by exploring underlying urban heterogeneity
patterns and revealing the impacts of urban function.

The remainder of this paper is organized as follows. In Section 2, we
review the related work. In Section 3, we introduce the two massive
geo-tagged image datasets used in this work, the MIT Place Pulse da-
taset and the street view images collected from two cities in China.
Section 4 introduces the approach used to predict human perceptions of
street view images and the approach used to determine the visual ele-
ments that are related to human perceptions. Section 5 describes the
experiment and the results of the proposed method. In Sections 6 and 7,
we discuss the significance and limitations of this study and draw some
conclusions.

2. Related work

2.1. Measuring human perceptions

The sense of place refers to human perceptions and nebulous
meanings based on our prior experience with a place (Cresswell, 2014;
Tuan, 1977). For decades, a wide variety of disciplines and fields in-
cluding geography, urban planning, environmental psychology and
neuroscience have considered about the connections between the en-
vironment and human perceptions (Kaplan & Kaplan, 1989; Lynch,
1960; Nasar, 1997; Tuan, 1977).

The seminal work of Tuan, Space and Place: The Perspective of
Experience (Tuan, 1977) focused on how space and place are formed
and how the feelings about place are affected. Regarding urban plan-
ning, the literature has focused mostly on the built environment of ci-
ties. Lynch identified three components that constitute an individual’s
feelings about the environment: identity, structure, and meaning, of
which meaning indicates the practical and perceptual value of the place
to the individual (Lynch, 1960). Rachel and Stephen Kaplan’s work paid
more attention to understanding the effect of nature on people’s per-
ceptions and mental health from the perspective of environmental
psychology (Kaplan & Kaplan, 1989). Similarly, Ulrich’s research de-
monstrated that the natural environment is able to induce people’s
aesthetic and affective responses (Ulrich, 1983), which would have a
restorative influence on patients (Ulrich, 1984).

Since these works were published, measuring the sense of place has
become a research area that has been receiving increased attention.
Studies have been conducted using surveys including interviews and
questionnaires to measure certain evaluative dimensions, for instance,

inviting subjects to rate the physical setting of a place using a 1–10
scale (Michael, 2005; Nasar, 1997; Schroeder & Anderson, 1984). Due
to the development of neuroscience, electroencephalographs (EEGs)
and functional Magnetic Resonance Imaging (fMRI) have been em-
ployed to measure human emotions by the response of brain signals to
different visual setting of the environment (Valtchanov & Ellard, 2015;
Mallgrave, 2010; Mišić et al., 2014). Quercia et al. conducted an on-line
survey for 700,000 streets to collect data on the sense of street in terms
of safety and beauty (Quercia, O’Hare, & Cramer, 2014).

In recent years, the proliferation of crowdsourcing technology has
enhanced the ability to collect a massive amount of images to represent
the physical setting of place and to predict human perceptual responses
of images. Research efforts have been made to predict the memorability
(Isola, Xiao, Torralba, & Oliva, 2011), virality (Deza & Parikh, 2015),
city/object style (Doersch, Singh, Gupta, Sivic, & Efros, 2012; Jae Lee,
Efros, & Hebert, 2013), aesthetics and interestingness of street scenes
(Datta, Joshi, Li, & Wang, 2006; Dhar, Ordonez, & Berg, 2011;
Machajdik & Hanbury, 2010), among others.

2.2. Representing the physical setting of a place using street-level imagery

Over the years, the rapid development of map services (Anguelov
et al., 2010) and volunteered geographic information (VGI) (Goodchild,
2007) has provided a massive amount of geo-tagged images. This new
source of data has can provide information on every corner of a city and
has been enabling broader and more in-depth quantitative research in
related fields. These data enhance the understanding of the city’s
physical and dynamic characteristics by detecting landmark (Hays &
Efros, 2015), recognizing urban identities (Liu, Zhou, Zhao, & Ryan,
2016; Zhang, Zhang, Liu, & Lin, 2018), evaluating the inequality of the
living environment (Salesses et al., 2013), and modeling human activ-
ities (Arase, Xie, Hara, & Nishio, 2010) and popular places (Crandall,
Backstrom, Huttenlocher, & Kleinberg, 2009). These new data also
provide information on the physical and social structures of dynamic
urban environments (Crandall et al., 2009; Less et al., 2015).

In 2013, the MIT Media Lab initiated the program “Place Pulse”,
which is a data collection platform that enables volunteers to partici-
pate in the urban perception rating experiment. By the end of 2016, the
MIT Place Pulse dataset had collected 1,170,000 pairwise comparisons
from 81,630 online participants for 110,988 cityscape images. Inspired
by the dataset and enabled by the recent progress in machine learning
techniques, a number of studies have been conducted to analyze human
perceptions of urban appearance (Dubey, Naik, Parikh, Raskar, &
Hidalgo, 2016; Glaeser, Kominers, Luca, & Naik, 2016; Naik,
Philipoom, Raskar, & Hidalgo, 2014Ordonez and Berg, 2014; Salesses
et al., 2013).

However, previous approaches have difficulty in extracting high-
level information about the natural image because they use low/mid-
level image features including Gist, SIFT- Fisher Vectors, DeCAF fea-
tures (Ordonez & Berg, 2014), geometric classification map, color
Histograms, HOG2x2, and Dense SIFT. Naik et al. (2014). With regard
to building models to predict image labels, Support Vector Machine
(SVM) and Linear Regression (LR) were used in Ordonez and Berg
(2014), Support Vector Regression was used in Naik et al. (2014),
RankingSVM was used in Porzi, Rota Bulò, Lepri, and Ricci (2015), and
several convolutional neural network based approaches were used in
Ordonez and Berg (2014), Porzi et al. (2015) and Dubey et al. (2016).
Among the various image representations and models, Deep Convolu-
tional Neural Network (DCNN)- based approaches have outperformed
conventional methods to a large extent (Dubey et al., 2016). This study
introduces a DCNN model that is based on the Deep Residual Network
(ResNet) (He, Zhang, Ren, & Sun, 2016), which won 1st place in the
ImageNet Large Scale Visual Recognition Competition (Russakovsky
et al., 2015).
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2.3. Extracting high-level information from natural images using deep
learning

Recently, due to the rapid development of high-performance com-
puting systems and the availability of large-scale annotated datasets, a
hierarchical and shift-invariant model has emerged in the form of
DCNN. Due to its powerful ability in automatic image feature learning
and representation, this model has attracted much attention and
achieved great success in multiple fields, including speech recognition
(Hinton et al., 2012), natural language processing (Sutskever, Vinyals,
& Le, 2014), and visual object detection (Ren, He, Girshick, & Sun,
2015; He et al., 2017). In this study, DCNN was employed to conduct
human perception modeling and prediction.

A very deep convolutional neural network is difficult to train and
optimize because of vanishing gradients and the curse of dimensionality
(Glorot & Bengio, 2010; He et al., 2016). ResNet is believed to be a good
attempt to address this problem. ResNet was designed to learn the re-
sidual functions with regard to the layer inputs rather than learning the
unreferenced functions (He et al., 2016). More specifically, we use the
ResNet50 that was pre-trained on Places2 ( http://places2.csail.mit.
edu/) which is an image database that contains 10 million well-labeled
images (Zhou, Lapedriza, Khosla, Oliva, & Torralba, 2017). We also
extracted the high-dimensional deep feature of each street view image
from the Place Pulse database.

3. Massive geo-tagged image datasets

Two data sources were used in this study, of which (1), the MIT
Place Pulse dataset was used to train the DCNN model to predict human
perception, and (2), the street view images were used for predicting
human perception in new urban regions.

3.1. MIT places pulse dataset

In 2013, the MIT Media Lab launched the project “Place Pulse 2.0”,
an online data collection platform for collecting human perceptual
ratings of urban appearance. On the website, the participants are shown
two street view images that are randomly sampled from one city side-
by-side; then, they are asked to choose one of the images as the re-
sponse to questions such as the following:“which place looks more X?”,
where the X can be one of six dimensions:“Safe”, “beautiful”, “depres-
sing”, “lively”, “wealthy”, and “boring”. The participants select one
response from three options, the left image, the right image or “equal”,
to indicate their perceptual judgment. Fig. 1 shows the user interface of
this platform.

The image dataset contains 110,988 street view images captured
between 2007 and 2012, spanning 56 cities in 28 countries across 6
continents (as Table 1 lists). Fig. 2 depicts the geographic distribution
of the image data in the MIT Place Pulse dataset. In terms of the scale of
cities, ecumenopolis such as New York and London, as well as cities
such as Glasgow and Gaborone, have been included in the dataset. For
each city, the locations were densely and randomly sampled from the
spatial region of the city. The meta-data of these images are also in-
cluded in the dataset, including the geo-coordinates and camera
heading degree. By October 2016, 1,169,078 pairwise comparisons had
been collected from 81,630 online participants (Dubey et al., 2016).

Evaluation of the diversity, consistency and potential biases of the da-
taset. Volunteers from 162 developed and developing countries parti-
cipated in this experiment, which indicates the diversity of the dataset.
To explore the potential biases in the collection that may come from the
demographics of the volunteers, a correlation significance test was
conducted. The results indicated that there were no significant biases
for groups with different demographics (Dubey et al., 2016; Salesses
et al., 2013). Furthermore, the internal consistency of the ratings in the
dataset was also tested by looking at the inter-user reproducibility and
transitivity; both were found to be high (Salesses et al., 2013).

Perception score calculation. The rating data in the Place Pulse da-
taset were in the form of two-image comparisons. Even though a pre-
vious attempt was made to design a model that can be trained with
comparison pairs (Dubey et al., 2016), we believe that using labeled
single-samples is more practical in application, because in a real case
we always want to know the observers’ perceptions of one single scene
rather than a comparison of two scenes. In this case, each image sample
i might have been compared with other images ′i several times, and
intuitively, the percentage of times that i is selected essentially indicates
the intensity of the perception for the specific dimension. In addition,
the intensity of ′i should also be considered and weighted when cal-
culating the intensity of I.

Attempts have been made to parameterize this process based on
intuition by Salesses et al. (2013) and Ordonez and Berg (2014) using
strength of schedule methods. Similarly, Dubey et al. (2016) adopted
the Microsoft Trueskill algorithm (Herbrich, Minka, & Graepel, 2007) to
achieve this. In this case, we employed the former approach. First, we
defined the positive rate (P) and the negative rate (N) of image i along a
particular perceptual indicator as:
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where pi and ni denote the number of times that image i was selected or
not selected in the comparisons, respectively, and ei refers to the
number of times that image i was believed to be equal to another image
in the comparison. Consequently, we were able to define the Q-score for
image i along the specific perceptual indicator as:
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where k1 and k2 indicate the number of times that image i was selected
and not selected, respectively, in the comparisons. According to Eq. 3,
the final Q-score is actually the positive rate Pi corrected by the ′Pi and

′Ni of the images that it was compared with. Referring to previous
studies in visual assessment (Nasar, 1997; Salesses et al., 2013), the
score will be scaled to a range from 0 to 10 by adding the constant value
1 and multiplying the equation by 10

3
to the equation.Fig. 3 shows 4

image samples with their corresponding perceptual scores (Q score) for
the six dimensions. We can see that different types of urban scenes may
induce different human perceptions. For example, the first image looks
boring but lively, because we can identity the human activities in the
scene. This image is also believed to be unsafe and not beautiful.

3.2. Street view images of Beijing and Shanghai

To predict the human perception of a new urban region, we also
collected street view images from new cities. In this case, the image
data of Shanghai and Beijing were obtained from Tencent Street View
service ( https://map.qq.com/) through an API. At an interval of 50
meters, the sampling locations were generated along the road network.
The locations were used to request street view images. For each location
point, the detailed request parameters were set as follows: image size:
480x600, compass heading of the camera: 0, 90, 180, 270 degrees; and
the horizontal field of view of the image: 90 degrees.

In total, 245,388 images were collected from Shanghai and 135,175
images were collected from Beijing.

4. Deep learning of street view images to assess urban design

4.1. Modeling human perception

Modeling human perception requires training a machine learning
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model to predict the human perception score of one street view image
along six perceptual indicators, namely, safe, lively, boring, wealthy,
depressing, and beautiful. Fig. 4 illustrates the overview of human
perception modeling and prediction. We formulate the human percep-
tion prediction problem as a binary classification task. In other words,
we need to predict whether one image would be perceived as positive or
negative. Handling the perceptual task with a binary classification
model rather than a regression model is more practical, such as those
used to predict aesthetics (Datta et al., 2006; Datta, Li, & Wang, 2008;
Dhar et al., 2011), and urban perceptions (Ordonez & Berg, 2014). This
method is more practical because human perceptual evaluation is
highly uncertain and unstable, especially around the middle scores. The
models used to predict the six perceptual indicators were trained

Fig. 1. The user interface of the MIT Place Pulse data collection platform ( http://pulse.media.mit.edu/). Participants are asked to choose one of the two images in
response to one of the six questions. Millions of human perception responses for the images have been collected.

Table 1
Statistics of image data in the MIT Place Pulse dataset. Images span 56 cities
across 6 continents (the stats collected here were obtained from Dubey et al.
(2016)).

Continent #Cities #Images

Asia 7 11,342
Africa 3 5,069
Australia 2 6,082
Europe 22 38,636
North America 15 33,691
South America 7 16,168

Total 56 110,988

Fig. 2. Geographic distribution of the image data in the MIT Place Pulse dataset – data on 56 cities from all over the world are included in the dataset.
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individually. For each perceptual indicator, the whole dataset was
simply sampled and split into a positive group and a negative group
according to the samples’ Q score.

To avoid introducing noise and error as much as possible, we se-
lected representative positive/negative samples from the whole dataset
to use for the training task. Specifically, for a specific perceptual in-
dicator ν, we first calculated the mean value μν, and standard deviation
σν of the dataset. We used a ratio variable δ to determine the threshold
for sampling. Hence, if image i was selected with the score Qi

ν, then its
label yi

ν could be represented as:

= ⎧
⎨⎩

− < −
> +

y
Q μ δσ
Q μ δσ

1 if
1 ifi

ν i
ν

ν ν

i
ν

ν ν (4)

Consequently, the two thresholds - −μ δσν ν, and +μ δσν ν created a
gap between the positive and negative samples, and the “noise” data
lying in-between were removed. The data were annotated with the label

“−1” and “1” for negative and positive samples respectively. The
variable δ determined the bandwidth of the gap. In this study, an ex-
periment was conducted with different δ to observe the model’s per-
formance, and Fig. 6 presents the specific number of samples used for
the experiment.

We experiment with training on the high-dimensional deep features
by using Radial Basis Function (RBF) kernel SVM (Joachims, 1998),
which is a binary classifier with kernels seeking a linear boundary in
higher dimensional space. For a typical Support Vector Classifier (SVC),
the decision function can be represented by:
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n are
the label classes, K x x( , )i denotes the Gaussian kernel, and αi denote the
parameters of the linear combination of the Gaussian kernels K x x( , )i .
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Fig. 3. Image samples from the MIT Place Pulse dataset with their perceptual score of the 6 dimensions.

Image Feature Extraction using DCNN

Feature: Image

High-dimensional Deep FeatureDCNNStreet-level Image

SVM Classifier

Label: Peception

Model Training
Human Perception Mapping

Model Applying

Confidence as 
score

Safe 6.3
Beautiful 5.3
Wealthy 5.5
Lively 6.0
Boring 2.3
Depressing 1.6

1
1
1
1

-1
-1

Binaryzation

Fig. 4. An overview: predicting human perception of street-level imagery. First, we extract the image feature using DCNN and annotated each image with a binary
label. Second, an SVM classifier is trained to predict the human perception of the street view images of a new urban region. Third, the spatial distribution of human
perception is mapped.
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In this case, the Gaussian kernel - RBF, can be represented by:

= ⎛
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− − ′ ⎞
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K x x x x
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( , ) exp || ||
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4.2. Identifying sensitive visual elements

To determine the visual elements that may cause a place to be
perceived as safe, lively, depressing, etc., we introduce a method to
identify the visual elements of a place that are highly correlated with
human perceptions.

The data used in this study were obtained from MIT Place Pulse
dataset. Basically, we used the perceptual rating scores of each image
from the calculation (Section 3.1). Meanwhile, to represent the street
scene elements we employed semantic scene parsing techniques (Zhou
et al., 2017) to calculate the area ratio of semantic objects in the scene.
Semantic scene parsing is one of the key techniques used for scene
understanding (Zhou et al., 2017), which aims at recognizing and
segmenting object instances in one natural image. Given an input
image, the model is able to predict one class label for each pixel. En-
abled by the recently developed DCNN (LeCun et al., 2015), the state-
of-the-art scene parsing model, PSPNet, has reached 79.70% pixel-
wised accuracy in classifying 150 categories of objects (Zhao, Shi, Qi,
Wang, & Jia, 2017), and has been employed in this study.

Fig. 5 is an overview of the multivariate regression analyses. The
analyses were conducted separately for each of the six perceptual in-
dicators. For one perceptual indicator, the perceptual scores were ob-
tained from the MIT Place Pulse dataset, and the area ratio of each
visual element in the image was calculated by counting the pixel
numbers in the segmentation mask.

Multivariate regression analyses were employed to investigate the
dependence between multiple variables. In this case, in consideration of
the effects that bring by spatial autocorrelations, which causes mea-
surements tobe clustered in related statistical units, we perform linear
mixed model analyses, which add a random effect for the dependent
variables to account for the correlations between data coming from the
same cities. The mixed model can be represented as:

= + +y β uX Z ∊∊ (7)

where y is a vector of observations; β is an unknown vector of fixed

effects; u is an unknown vector of random effects; ∊ is an unknown
vector of random errors; X and Z are known design matrices relating the
observations y to β and u, respectively.

Each of the 6 perceptual indicators was used as the dependent
variable in 6 independent analysis individually, and the 150 object
categories were treated as the predictors and also used as the fixed
effects in the mixed model. Meanwhile, the cities from which the ob-
servations were obtained were used as random factors. The contribu-
tion of each object to a specific perceptual attribute was compared by
observing the standardized coefficient of that object in the regression
analysis.

5. Experiment and results

5.1. Perception prediction results

The RBF kernel SVM was trained and validated over fivefold cross-
validation. The performance of the model with different δ values,
namely 0.5, 0.7, 1.0, 1.2, 1.5, and 1.8 was evaluated. Fig. 6 shows the
number of positive and negative samples used with different δ . To treat
the imbalanced classes, weights were assigned to each sample in the
training process, according to the size of splits. Moreover, we experi-
mented with training tasks on six perceptual indicators: safe, lively,
beautiful, wealthy, depressing, and boring. The results are shown in
Fig. 6.

As we can see from the Fig. 6, high and reliable accuracy were
achieved in predicting the six perceptual indicators. The accuracies of
the different indicators varied. For instance, the accuracy of safe,
beautiful, and wealth were slightly higher than that of depressing,
boring and lively. This result might be caused by variances in how
people understand these concept; their knowledge might tend to be
relatively consistent with “what is the beautiful scene” but inconsistent
with “what is the depressing scene”. Another reason might be in-
sufficient data collection for the latter three dimensions. In addition,
the average accuracy decreased as the bandwidth of the sample gap
narrowed (smaller δ), indicating that human preference was compara-
tively unstable for normal scenes.

Image 
Segmentation

Safe 6.3
Beautiful 5.3
Wealthy 5.5
Lively 6.0
Boring 2.3
Depressing 1.6

wall 0.0013
building 0.1071
sky 0.1700
tree 0.2843
road 0.2251
grass 0.1020
sidewalk 0.0033
plant 0.0001
car 0.0973
sign 0.0035
stairs 0.0002
van 0.0058

Place Pulse 
Perception Score

Objects
 Viewshed Ratio

Multivariable Linear Regression 
Analysis

Fig. 5. An overview: multivariate linear regression analyses between the perceptual scores and the presence of a visual element. Image samples are selected from the
Place Pulse dataset with perceptual scores. The presence of a visual element is calculated from the image using an image semantic segmentation model.
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5.2. Perception mapping in a new urban region

The pre-trained perception predictors were used to estimate the
perceptual distributions in a new region. However, since the predictor

was binary, the estimation result was discrete and in the form of −1
and 1. To quantify the perception and obtain a continuous value, we
took the positive confidence of the SVM model, which indicates the
probability of one sample to the positive label, as the value of the

Fig. 6. The sample size and the corresponding average accuracy in the experiment are shown. The vertical bars show the positive and negative samples used in the
training task with different values of δ . As δ increases, fewer samples were selected. The red curves indicate the average accuracy with different sizes of training
samples. The error bar was calculated from 5-fold cross-validation.

(a) Safe (b) Lively (c) Beautiful

(d) Wealthy (e) Depressing (f) Boring
Fig. 7. Mapping the human perception of Beijing using 6 perceptual indicators.

F. Zhang et al. Landscape and Urban Planning 180 (2018) 148–160

154



perception.
The perceptual scores of all images for Beijing and Shanghai were

collected in this work and calculated by the pre-trained model. We then
used the street as the visualization unit and spatially joined the image
points as well as their perception scores to its street by averaging. Fig. 7
and Fig. 8 show the perceptual mapping of the two cities, which can be
considered the “City Perception Map”.

In general, from the figure, we can conclude that the downtown

areas are more “safe” and “lively” than the surrounding suburbs.
Similarly, mid-level roads are more “safe” and “lively” than the ring
road and highway. However, there are several groups of street networks
inside Beijing’s third ring road that is predicted to be unsafe, which is
due to the large number of old houses and narrow roads that have fallen
into disrepair around these historical sites. Moreover, we notice that the
short and small streets in the dense street networks tend to be more
lively. This result may align with Jacobs (Jacobs, 1992), who suggested

(a) Safe (b) Lively (c) Beautiful

(d) Wealthy (e) Depressing (f) Boring
Fig. 8. Mapping the human perception of Shanghai using 6 perceptual indicators.

With high safe score 
Qsafe >= 7

With medium safe score 
3 < Qsafe < 7

With low safe score 
Qsafe <= 3

Fig. 9. Image samples from Shanghai that were predicted with high safe scores (left) and low safe scores (right).
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that blocks should be designed to be short, to increase path options and
diversity. People’s perceptions actually align with the actual functional
area of the city. For example, there are several communities distributed
around the area between the fourth and fifth ring road, which is actu-
ally a growing residential area. Fig. 9 presents several street view
images sampled from Shanghai. The samples that were predicted to
have high safe scores are shown on the left, and samples with low safe
scores are shown on the right. The prediction results match up with our
intuition that the well-attended streets with green plants and vehicles
tend to be more safe, while the areas with awnings, scruffy fences, and
mud roads are considered to be unsafe.

Perceptual spatial distribution of Beijing. Inspired by the preliminary
results of the perception spatial distributions, we were interested in the
spatial change in the perceptual indicators from the inner city to the
outer city. Taking Beijing as a case study, we took Tiananmen Square as
the center of circle, and divided the research area into 16 concentric
rings of a 1 km incremental radius. By aggregating, averaging and
normalizing the perceptual scores of the images in each concentric
zone, we were able to observe the spatial change in the perceptual in-
dicators. As shown in Fig. 10, generally, from the inner city to the outer
city, the indicators “beautiful”, “safe”, “lively”, and “wealthy” first in-
creased and then decreased, and the indicators “depressing ” and
“boring” showed the opposite pattern. In particular, the area with the
most “positive” perceptions was the 5th ring, which corresponds to the
area around the third ring road of Beijing.

Perceptions of different road types. From Fig. 7 and Fig. 8 we noticed

that the perception scores were highly related to the type of road. To
understand the human perceptions of different types of roads, we ag-
gregated and averaged the perceptual scores according to road type.

Based on the descriptions obtained from the OpenStreetMap, the
streets in the road network of Beijing were classified into 6 major ca-
tegories: motorway, trunk, primary, residential, service, and living
street. The description of each category is shown in Table 2. As we can
see from the results (Fig. 11), “motorways”, which were significantly
different from the other road types, received high values for “boring”,
and “depressing” and low values for the four positive perceptions. The
perceptions for “trunk” and “primary” roads were similar, while the
latter one was more “lively” and less “boring”. Of all the road types,
“living streets” had the highest value for the four positive perceptions
and the lowest value for the two negative perceptions.

Correlation analyses among the perceptions. By comparing the dis-
tribution of the human perception across the 6 indicators, we also no-
ticed that the geo-spatial patterns were intuitively similar among some
of the perceptual indicators. Consequently, a crossover Pearson corre-
lation analysis of the 6 indicators was conducted. Fig. 12 shows the
Pearson correlation coefficients with data from Beijing and Shanghai.
Generally, we found that some of the pairs of the indicators were highly
correlated, such as “beautiful – wealthy” and “depressing - safe”, and
some pairs like “beautiful - boring” were relatively independent. More
specifically, the connections among these indicators varied between
Beijing and Shanghai. For instance, the correlation of “wealth - de-
pressing” was strong in Beijing but comparatively low in Shanghai. We
believe that the inconsistency is caused by the different characteristics
of cityscapes of the two cities, and more in-depth studies are needed to

Depressing

Boring

Beautiful

Lively

Wealthy

Depressing

Boring

Beautiful

Safe

Lively

Wealthy

Fig. 10. Spatial Changes of the six perceptual indicators from the inner city to
the outer city of Beijing using concentric rings. The Beijing area was divided
into 16 concentric rings of a 1 km incremental radius starting at the center of
Tiananmen Square. For each concentric zone, the perceptual scores of the
images were aggregated, averaged and normalized. Note that 16 the concentric
zones indicated the actual spatial location, while the sub-zones of each con-
centric zone only denoted the relative ratio of the 6 perceptual indicators.

Table 2
Road type and description.

Type Num. Description (from Open Street Map)

Motorway 835 A restricted access major divided highway, normally with 2 or more running lanes plus emergency hard shoulder.
Trunk 1191 The most important roads in a country’s system that aren’t motorways.
Primary 1555 The next most important roads in a country’s system.
Residential 3029 Roads which serve as an access to housing, without function of connecting settlements. Often lined with housing.
Service 1666 For access roads to, or within an industrial estate, camp site, business park, car park etc.
Living street 226 For living streets, which are residential streets where pedestrians have legal priority over cars, speeds are kept very low and where children are allowed to

play on the street.

Fig. 11. Perceptual indicators of different road types in Beijing.
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test this hypothesis in the future.

5.3. Factor identification results

In Fig. 13, we present the results of the multivariate regression
analyses between the perceptual indicators and the presence of visual
elements, where the top 10 objects that positively (red bar) or nega-
tively (blue bar) contributed to each perceptual indicator are ranked
and listed. The length of the bar indicates the value of the betas -
standardized coefficients and the * implies the significance level.

As shown in Fig. 13, overall, we found that the objects that highly
contribute to the perceptual indicators varied. For instance, the area
ratios of “cars”, “sidewalks”, and “roads” were positively correlated
with the “lively” score. This result exactly aligns with Jacobs’s propo-
sition (Jacobs, 1992) to improve the liveliness of a city. In contrast,
“beautiful”,“wealthy”, and “depressing” were more sensitive to the
areas of “trees”, “grass” and ‘flora’. Moreover, we noticed that a “wall”
was a negative element in almost all of the six dimensions (here we
refer to “positive” for “depressing” and “boring”), especially for “safe”,
which is counter-intuitive to some extent. This finding corresponds to
the philosophy of contemporary urban planning, which has argued that
walls may lead to blocked views, decreased sunshine and the build-up
of pollution (Wong, Nichol, & Ng, 2011) and thus should be reduced.
This phenomenon was coined the “wall effect”. Our result provides
evidence of the “wall effect” from the perspective of human perception.

The fact that urban greenery brings a sense of peacefulness and
quietness has been discussed by Ashihara in his theory about the art of
landscape in streets (Ashihara, 1983) and by Rachel and Stephen Ka-
plan in their theory about “restorative environments” (Kaplan &
Kaplan, 1989). Consistent with these theories, the “greenery” and
“natural” objects were highly correlated with all the perceptual in-
dicators. From another perspective, our results showed that the positive
contributors of “beautiful” came from natural elements, where objects
such as buildings were excluded. Such a relationship also agrees with
Olmsted’s Philosophy of embedding the eco-system into urban infra-
structure. The objects “building” and “minibike” were positively cor-
related with “lively”, which is also consistent with the goals of new

urbanism (Beveridge & Rocheleau, 1995).
Regarding the sense of safety, the disorder of the physical setting of

a place, such as the filthiness of streets caused by litter, graffiti, vand-
alism, and poorly maintained buildings, reduces the perception of
feeling “safe” (Skogan & Maxfield, 1981; Taylor, Gottfredson, &
Brower, 1984; Wilson & Kelling, 1982). People may choose to take a
different route if they perceive a neighborhood to be unsafe (Short,
1984). Similarly, Perkins points out that personalization of property can
make the street environment a safer look, as can the presence of
streetlights, block watch signs, yard decorations and private plantings
(Perkins, Meeks, & Taylor, 1992). In this study, streetlights and traffic
signs were not identified as predictors of feeling “safe”, because of their
small volume in the images used in this study. However, similar things
such as cars, plants, and houses were to be found positively correlated
with the sense of safety.

6. Discussion

The physical setting of a place and its perceptions impact the be-
havior and health of its dwellers. For more than a century, a wide
variety of fields have discussed the importance of urban physical ap-
pearance and the visual factors that may contribute to human percep-
tions. The contributions of this work are as follows: first, this study used
an approach to determine the perceptions of a place for a large-scale
urban region using big data of street-level imagery. Second, this study
sought to define the connections between the physical setting of a place
and the human perceptions of the place quantitatively.

The large-scale mapping of human perceptions provides a macro-
scopic perspective for observing the whole cities and urban regions. We
can see many opportunities to apply this method practically. For ex-
ample, in pedestrian navigation applications, the perceptual map of a
city is able to suggest a path that will be more comfortable instead of
time-consuming, giving users a special walking experience. In terms of
theoretical implications, we believe street-level imagery offers potential
opportunities for place formalization, for instance, enriching place se-
mantics with human perceptions, which will help researchers under-
stand the underlying urban heterogeneity patterns and reveal the

(a) Beijing (b) Shanghai
Fig. 12. Pearson correlation coefficients among the 6 perceptual indicators using data from Beijing (a) and Shanghai (b).

F. Zhang et al. Landscape and Urban Planning 180 (2018) 148–160

157



impacts of urban function. In addition, perceptual mappings in a time-
series will indicate urban changes, which will also support theories
connecting the physical setting of place and social-economic variables.
For example, Naik, Kominers, Raskar, Glaeser, and Hidalgo (2017)
found that neighborhoods with a certain demographic property are
more likely to be physically improved.

What visual elements impact human perceptions? In Section 5.3, we
conduct a multivariate regression analysis to identify the presence of
visual elements that correlated with human perceptions in terms of six
dimensions, namely, safe, lively, beautiful, wealthy, depressing and
boring. On one hand, the visual elements identified in this study, for
instance, the contribution of walls, green plants, vehicles, and man-
made features to specific perceptual indicators, will directly support the
theory and practice of urban design. On the other hand, the potential
benefit of these results lies in creating computer-generated scenes based
on derived criteria using data-driven rendering techniques, for ex-
ample, generative adversarial nets (GAN) (Goodfellow et al., 2014).
These techniques have a great potential to generate urban scenes that
are perceived safe, lively and non-depressing with presenting a certain
proportion of visual elements and to further inform urban designers.

The limitations of this work also deserve to be discussed and to be

paid more attention to in future works. First, in applying our model to
map the human perceptions of new urban regions, the bias that was
caused by the visual variances in the landscape of the different cities
should be considered. Technically, this problem can be formulated as
adapting data distribution between different domains. To validate the
performance of the prediction phase, future works may need to collect
more samples from the region, conduct an evaluation experiment and
test the model with the test set.

Second, this is a preliminary study in terms of connecting visual
elements in street view images with human perceptions. In particular, it
is challenging to encode all the variances in the human perceptions of a
place. As implied in previous studies (Quercia et al., 2014), human
perceptions extend beyond the visual, and experiencing a place is not
about observing singular viewpoints or looking at a specific visual ob-
ject, experiencing a place is more about the culture, history, activities,
and interactions with the surroundings over time, which is not easily be
represented by visual images. Future studies to model the place senti-
ment could by possibly extended to investigate social and humanistic
factors using data such as point of interest (POI), human mobility, and
demographics of the neighborhood.

In addition, the image data we used in this study were street view

Fig. 13. The results of the multivariate regression analysis between the scene elements and the perception scores. For each pair, the pixel number of a particular
object category and the perception score along a specific dimension are given. The top 10 objects that positively/negatively contributed to each of the 6 perception
types are shown.
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images, which were taken along urban streets. Street is one major place
where human activities take place, but not all of them. Areas in street
blocks such as parks, alleyways, vacant lots, campus, etc. also con-
tribute powerfully to people’s perceptions. In future studies, images
from social media that cover more wide urban spaces should also be
considered and extended to the analysis.

7. Conclusion

The physical setting of a place and its perceptions impact the be-
havior and health of its dwellers; however, measuring human percep-
tions of a place in large-scale urban regions has been challenging due to
the lack of both quantitative data and appropriate methods to deal with
the data. In this work, we propose a quantitative approach to measure
human perceptions of a large-scale urban environment in an automatic
and efficient way by incorporating street-level imagery to represent
places and a deep learning method to understand the high-level in-
formation of the images. The study provides a tool to better understand
human perceptions of the built environment. Second, we conduct sta-
tistical analyses to identify the visual elements that highly impact
human perceptions. Specifically, we correlate the presence of visual
elements with human perception scores to determine what kind of
physical setting has an impact on the sense of place. We have identified
that a wall is a negative element in an urban scene, and natural ele-
ments always induce positive perceptions, which is compatible with the
literature in related fields.

The results of this work support urban design theories and practices
and illustrate the value of employing machine learning methods to
understand how people perceive the physical setting of places. This
study also demonstrates the value of street-level imagery in place for-
malization. Place semantics may be enriched in terms of the human
sense, helping researchers understand the underlying urban structure
and reveal the impacts of urban function.
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