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Understanding the visual discrepancy and heterogeneity of

different places is of great interest to architectural design, urban

design and tourism planning. However, previous studies have

been limited by the lack of adequate data and efficient methods

to quantify the visual aspects of a place. This work proposes a

data-driven framework to explore the place-informative scenes

and objects by employing deep convolutional neural network

to learn and measure the visual knowledge of place appearance

automatically from a massive dataset of photos and imagery.

Based on the proposed framework, we compare the visual

similarity and visual distinctiveness of 18 cities worldwide

using millions of geo-tagged photos obtained from social

media. As a result, we identify the visual cues of each city that

distinguish that city from others: other than landmarks, a large

number of historical architecture, religious sites, unique urban

scenes, along with some unusual natural landscapes have been

identified as the most place-informative elements. In terms of

the city-informative objects, taking vehicles as an example, we

find that the taxis, police cars and ambulances are the most

place-informative objects. The results of this work are inspiring

for various fields—providing insights on what large-scale geo-

tagged data can achieve in understanding place formalization

and urban design.
1. Introduction
The physical setting of a place, such as a cityscape, is shaped

heterogeneously by the difference in the development of culture,

geography and history, as well as the interactions of dwellers

over hundreds years of human settlement [1,2]. Therefore, the

visual appearance of a place carries distinct information that

differentiates it from other places. For example, by relying on

the city-informative cues in a photo, one can infer the geo-location
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[3]. From the style of the window and balcony support of a street view image, one can recognize that it is

in Paris [4]. Understanding the visual differences between places is of great significance to urban studies,

urban design and tourism planning. However, comparing and quantifying the visual discrepancies

between places, as well as faithfully identifying the visual features in the physical setting of a place

that makes the place distinctive, have been challenging and are not yet solved [5]. Meanwhile, because

the visual cues are always subtle [4], people’s high-level knowledge of cultural difference and scene

perception are usually required to perceive and distinguish places [6,7].

The literature advanced by architects, urban planners and geographers has been active in understanding

the visual characteristics of scenes, places and cities. However, previous works have mainly relied on in situ
surveys and interviews on the visual identities in the urban space, such as exploring street elements that

constitute people’s mental maps [1], identifying place-identity symbols lost in a hurricane [8], examining

place attachment at different scales [9] and exploring visual cues for place perception [10]. These

methods provide valuable insights, but are labour-intensive, time-consuming and difficult to scale up [7].

On the other hand, the progress of computer vision has allowed the accurate recognition of the street-

level imagery. Efforts have been made to localize a photo to the place where it was taken [11,12],

determine the visual cues that make a city look special [4], understand what makes London look

beautiful, quiet and happy [10]. These works have demonstrated that street-level images hold great

promise for delivering more research value in understanding the physical setting of a place. However,

our ability to understand the urban scene, for example, the cultural, historical style of streetscapes, is still

limited by the lack of computational tools to extract high-level representations of images [13].

Recent breakthroughs in deep learning [14] have presented the outstanding performance of deep

convolutional neural network (DCNN) in various computer vision tasks, such as image classification

[15,16], image object detection [17] and image scene recognition [18]. They have produced recognition

results comparable to or even better than human performance in some of the tasks. The success of

DCNN is mostly attributed to its powerful ability to learn effective and interpretable image features

[19]. Enabled by the proliferation of deep learning, researchers have advanced the studies on looking

deeper into the physical appearance of places. It is even possible to infer factors beyond the scene, such

as the crime rate [20], human feelings [21] and demographics [22]. Indeed, DCNN takes inspiration

from the human brain and is designed to mimic human cognitive functions [14]. Recent studies have

also demonstrated that humans and computer vision-based models behave alike in perceiving their

surroundings by just seeing a small glimpse of it in a single street-level image [23]. Similarly,

researchers have successfully trained DCNNs to learn for complex cognitive tasks—such as long-range

navigation in cities without a map [24,25]. Compared with traditional computer vision features, DCNN

learns and grasps high-level cognitive information of images, including complex visual concepts in the

scenes, potentially helping to better capture the cultural and historical styles of places in street-level images.

The goal of this study is to extract distinctive visual aspect of places by exploring place-informative

scenes and objects. Similar works have been done in recognizing geo-locations [26–28], detecting

landmarks [11,12,29–31], examining ambiance perceptions [32,33] and identifying urban identities

[4,5,34]. The work closest to ours is [4,5]. Doersch et al. [4] proposed a framework based on

discriminative clustering to discover the clusters of local image patches that make a city distinct. These

patch clusters reflect very local cues about the urban properties, such as windows style or building

textures, while our work focuses on higher-level concepts such as scenes and objects. Zhou et al. [5]

only analysed distinct scenes across cities using a scene classification framework, while our work

unifies the analysis of scenes and objects. With different aims, this work proposes a general framework

to explore a place’s visual cues, not only including landmarks but also containing historical

architecture, religious sites, unique urban scenes, unusual natural landscapes and distinct objects. In

detail, the framework formulates the style learning problem as a discriminative classification task and

first trains a DCNN-based model to predict the place where a given photo comes from. Second, by

ranking the model confidence of each image sample, which indicates how much a photo visually looks

like it was taken in a specific place, we capture a collection of place-informative scenes. We go one step

further to explore the place-informative objects in the scenes by first detecting and cropping objects in

the photos and then conducting model training and sample ranking tasks with the same pipeline.

Third, by looking into the misclassification rate of the classification task, a metric to measure the

distinctiveness of places and the similarity between a pair of places is proposed in the framework.

To demonstrate the effectiveness of the proposed framework, a case study is conducted by using

more than two million photos from Panoramio1 dataset of 18 cities worldwide to identify the most
1https://www.panoramio.com/.
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city-informative objects and scenes, and measure the distinctiveness of cities and the similarity between a

pair of cities. The results show that Bangkok, Rome, Amsterdam, etc., are the most visually distinctive

cities, and Bangkok–Singapore, Hong Kong–Singapore and London–Paris, look similar to each other

visually. Additionally, various landmarks, historical architecture, religious sites, unique urban scenes

and unusual natural landscapes of each city have been explored as the most city-informative scenes.

In terms of the city-informative objects, we take the most common objects, vehicles, as an example,

finding that taxis, police cars and ambulances have been detected as the most city-informative

vehicles, which is inspiring and consistent with common sense.

This work makes a contribution to learning the visual features of places with a DCNN using massive

geo-tagged images. The work will further help to understand and quantify the visual characteristics of

places and has the potential to enable insight into what geo-tagged visual big data can achieve in

formalizing the concept of place, understanding urban morphology and advising city decision-makers.
 os
R.Soc.open

sci.6:181375
2. Framework for exploring place-informative scenes and objects
We propose a general data-driven framework to learn and compare the visual appearance of different

places, and explore the place-informative scenes and objects. Figure 1 depicts the overview of the

framework. The framework is composed of four parts, namely (a) image preprocessing and database

building, (b) training classification model to recognize places, (c) identifying place-informative scenes

and objects and (d) calculating place distinctiveness and similarity. Part (a) illustrates the image data

type and necessary preprocessing for the building of a geo-tagged image database. The image

database is then employed to train a DCNN-based classification model to recognize which place the

images come from. The training process is presented in part (b). Parts (c) and (d) identify place-

informative scenes/objects and calculate place distinctiveness/similarity respectively based on the

outputs of the model that trained in part (b). Details of each part are described below.
2.1. Geo-tagged image database
In order to analyse and understand the visual knowledge of a place, we use a large number of images

with geographical information to represent the visual environment of the place. There are three

commonly employed data sources to describe a place: social media photos, street view imagery and

customized image data. Social media photos from photo-sharing websites like Panoramio and Flickr

are uploaded by tourists and photographers. These photos record the beautiful or unique scenes of a

city and present the subjective view of a place [32]. By contrast, street view imagery, such as Google

Street View describe a place in an objective manner [35]. The content and locations of street view

imagery are largely limited by the accessibility of the locations for street view vehicles. Besides,

researchers will collect their own dataset by field survey to investigate specific places, such as indoor

buildings on a campus [36].

The raw downloaded data is first preprocessed through data cleaning and data labelling. Data cleaning

refers to the process of filtering the non-place-relevant data samples, especially for social media images

which may contain artificial images, indoor scenes, objects, etc. Data labelling is to aggregate each

image spatially to its place category. For instance, in order to examine the visual information across

different cities, the images should be labelled by their city names. For N places in the research area, we

take all the image samples of the ith (i ¼ 0, 1, . . ., N 2 1) place as the category label i.
The geo-tagged image database is then split into a training set and an application set with a ratio of f.

The training set is used to train a classification model for learning the visual features and characteristics

across places, and we explore the visually distinct scenes or objects by applying the classification model

to the application set.
2.2. Place classification using deep convolutional neural network
People can easily identify a familiar place in a photo, because they can develop a knowledge of the

place’s characteristics through experience. Inspired by this cognitive capability, we formulate the place

visual knowledge learning problem as an image discriminative classification task, aiming to predict

which city a given image comes from by training a classifier. Our method assumes that the classifier

will learn features and knowledge about visual differences among places.
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The challenge of the classification task lies in the wide variety of scene contents, scene types and scene

styles. Previous works using low/mid-level computer vision features have proved a certain performance

for understanding scenes [26,37]. Recently, DCNN has been demonstrated as an effective tool to learn

and grasp high-level visual knowledge of natural images, yielding state-of-the-art results compared

with conventional features on various computer vision tasks [15,38]. The success of DCNN is mostly

attributed to its powerful ability to learn effective and interpretable image features [19].

We suggest employing DCNN in this framework to better capture and learn the cultural and

historical styles of places in the street-level imagery. For N places in the research area, we train an

N-category DCNN classification model using the training set. Since the sample numbers of places

may be quite different, we assign weights to each categories to deal with the imbalanced class

problem. For the ith place with s image samples, the category weight of the place is obtained by �S=si,

where �S is the average number of the total samples.
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We take advantage of the visual knowledge gained from the place image classification task and apply

the pre-trained model to the application set. From the results, the confidence scores of image samples will

be used to explore the most place-informative scenes and objects; and the misclassification will be used to

measure the visual distinctiveness and similarity between places.

2.3. Identifying place-informative scenes and objects
To identify place-informative scenes and objects, we pose the problem with two objectives: (i) frequent

itemset mining, which aims to identify the repeated and visually consistent samples in a same place

category and further (ii) classification, i.e. mining samples occurring in a particular category rather

than other categories. The two objectives can be typically approached by using machine learning-

based classification. As described in step (b) of the framework, the pre-trained DCNN model is used

to evaluate all the image samples in the application set.

Our approach is based on the confidence measure in the classification task. The assumption is that for

a specific sample, the higher the probability that the model yields, the more distinctive the sample is in

terms of discrimination from the other categories. We then rank the samples that would be correctly

classified based on their confidence scores. The confidence score suggests how confident the algorithm

is for a prediction [39]. In this case, it indicates how much a photo visually looks like it comes from a

specific place. Through the process described above, a collection of city-informative scenes can be

captured.

In terms of identifying the place-informative objects, we first organize a geo-tagged object image

database that only contains object images. This process can be achieved by cropping object patches

from social media photos using a pre-trained object detection model. Then, the place-informative

objects can be explored through the same pipeline used in identifying the place-informative scenes

(figure 2).

2.4. Visual distinctiveness and similarity between places
The misclassification rate of each place category is obtained from the classification task on the application

set, and is then transformed into a confusion matrix. The confusion matrix is a metric that has been

typically used to not only evaluate the performance of classification models on datasets, but also

demonstrate the similarity between categories [40]. The values in the main diagonal represent the ratio

for which the prediction is successful, while the other elements in the matrix are those that were mis-

classified by the model. In this case, the diagonal values are actually the accuracy of the classification

task for each place, and here, we believe it indicates the distinctiveness of each place, as a higher

value indicates a larger number of distinct samples in the category that are not likely to be

misclassified by the model. Hence, we take the diagonal values in the normalized confusion matrix as

a metric to measure the visual distinctiveness of a place.

Additionally, the off-diagonal values indicate the misclassification ratio from place Pi to place Pj.

Here, we argue that if Pi has a high probability to be recognized as Pj and, at the same time Pj has a

high probability to be recognized as Pi, then the two places are visually similar to each other.

Accordingly, the similarity score between Pi and Pj can be measured by the sum of the

misclassification ratio of Pi to Pj and the misclassification ratio of Pj to Pi, and we take the similarity

score as the metric to measure the visual similarity between a place pair.
3. Experiment and results
In this section, we report the implementation of the framework by a case study. We train a DCNN with

millions of social media photos to learn, compare and quantify the visual features between 18 cities

worldwide.

3.1. Image data
The image data were collected from Panoramio. Panoramio is a photo-sharing platform that contains

billions of geo-tagged photos taken from all around the world. It provides application programming

interface (API) for photo data request, and all the photos used in this study were published under one

of the Creative Commons licenses and can be used freely for academic purposes. In this study, we use



Figure 3. Photo samples in Panoramio dataset. Photo credits: Panoramio dataset. Thanks for licensing this CC-BY.
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more than 2 million photos of Panoramio from 18 cities, including both metropolitan and small cities

worldwide, spanning 15 countries across three continents. The photos were taken from 2013 to 2014

and uploaded by users, which include residents, photographers, tourists, etc., the image contents

actually indicate their subjective preference of the cityscape, such as beautiful scenery, historic

buildings, famous sculptures and ancient architecture, among other things.

We note that the photo types are of great variety, not only including outdoor scenes with different

scales but also containing indoor scenes, objects (e.g. an apple) and artificial images (e.g. a logo). In

order to remove these non-place-relevant images, we trained a binary-classification model to predict if

an image is an outdoor scene image or not. We organized the training dataset with image samples

from Caltech 101 (a dataset contains object images) [41] and Places2 [18] (a dataset contains indoor

scenes and outdoor scenes), trained a support vector machine (SVM) classifier with Places2 image

features [18] and achieved an accuracy of 97.94%. By filtering the initial dataset with the classifier,

2 084 117 photos were obtained for the experiments. Figure 3 presents several photo samples.

The geo-tagged city image database for learning city-informative scenes is then built by labelling all

photo samples based on the cities they come from. To explore the city-informative objects, we organize a

geo-tagged city object image database with object patches detected and cropped from each photo using a

pre-trained image object detection model. In this case, a single-shot multibox detector (SSD) model [42]

that is pre-trained on the common objects in context (COCO) dataset [43] is used. The pre-trained model

is able to detect 80 categories of objects with an average accuracy of 81.6% [42]. The statistics of the photos

and object patches are shown in table 1. The two databases were split into training set and application set

with a ratio f equal to 1 : 1.

3.2. Experiment
According to the proposed framework, the work flow of the experiment is divided into three steps. As

depicted in figure 4, the first step is to conduct a city discriminative classification task, which predicts

which city one given image is taken from. The misclassification rate of each city category is further

analysed in step 2, in which we measure the visual similarity and visual distinctiveness with a

confusion matrix. Additionally, the model trained in step 1 is further used to predict the confidence

score of all the photo samples in step 3 to identify the city-informative scenes and objects of each city.

For the 18 cities, two 18-category classification DCNN models were trained using geo-tagged city

image database and geo-tagged city object image database, respectively. In detail, we employed
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step 2 for comparing the visual similarity and distinctiveness between cities. The model is used to predict the confidence scores of all
the photo samples in step 3 for identifying city-informative scenes and objects. Photo credits: Panoramio dataset. Thanks for
licensing this CC-BY.
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ResNet-152 as the architecture of the model, which is a 152-layer DCNN model built by deep residual

modules [44]. To accelerate the training process, the network was initialized with ImageNet weights

[15]. In addition, we noted that the image numbers of each city are quite different. To deal with the

imbalanced class problem, we applied weights to each city category.

For the city classification task using original photos, we achieved a 36.43% average accuracy over

fivefold cross-validation with a +0.39% confidential interval. For the city classification task using

object patches, we achieved an accuracy of 50.15% for car, 38.61% for person, 45.31% for bus, 37.68%

for truck, 32.29% for train and 32.29% for boat.
3.3. Results

3.3.1. Visual distinctiveness and similarity between cities

Based on the misclassification rate of the city classification task, we demonstrate the visual distinctiveness

and similarity using the confusion matrix metric proposed in the framework. Figure 5 shows the

confusion matrix. The main diagonal value represents the ratio of photo samples that are correctly

classified into their city category, which indicates the visual distinctiveness of the city. The off-

diagonal value represents the ratio of photo samples misclassified into another city category, which

indicates the visual similarity between a pair of cities. A higher value indicates a higher visual

similarity. Bangkok (0.52), Rome (0.50), Amsterdam (0.46), Seoul (0.44) and Hong Kong (0.42) are

interpreted as more visually distinct, while Berlin (0.20), London (0.23) and Vienna (0.24) are easily

misclassified into other city categories and are interpreted to be visually common.

In figure 6, we show the similarity matrix of the 18 cities. The similarity score between two cities is the

sum of misclassification ratios of the pair of cities to each other. From the matrix, we concluded that

Bangkok–Singapore (0.19), Beijing–San Francisco (0.17), Hong Kong–Singapore (0.16), London–Paris

(0.15), Tokyo–San Francisco (0.15), Prague–Vienna (0.14) and Rome–Barcelona (0.14) were pairs of

higher similarity.
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Figure 5. Confusion matrix of the city classification task using photos. The main diagonal values represent the ratio of photo
samples that are correctly classified into their city category. The off-diagonal values represent the ratio of photo samples
misclassified into another city category.
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Figure 7 presents the geo-location of the 18 cities with red circles in a map. A larger circle indicates a

higher distinctiveness score; city pairs with higher similarity scores are connected with blue lines.

Generally, we noted that the cities geographically close to each other tended to be more visually similar,

because of the cultural convergence and common history and origins, which is in accordance with

common sense. Inspired by the two analyses above, we believed that there are city-informative cues that

exist in the imagery, which enable the DCNN model to visually identify one city among others. In the

next part, we present the results of mining these cues, which are city-informative scenes and objects.
3.3.2. Identifying city-informative scenes and objects

The DCNN model trained on the 18-city recognition task has learned the knowledge of cities’ visual

characteristics. We then used the model to predict the confidence score, which is the probability of each

prediction being correct (ranging from 0 to 1) for all the photos, and ranked them from high to low.

A higher confidence indicates that the model is more confident that one photo was taken from one specific city.

Figure 8 shows the photos with high confidence scores for each of the 18 cities, and these photos are

believed to be the city-informative scenes. Landmarks, historical architecture, religious sites, unique

urban scenes and unusual natural landscapes of the cities, which are city-informative and

representative, have been explored according to their ranking. In particular, Amsterdam, Barcelona,

Berlin, Hong Kong, Moscow, Prague and Vienna present their distinctive architectural styles; Beijing,

Rome, Seoul and Tokyo show their identical and historical buildings; and London, New York, Paris

and San Francisco are famous for several landmarks, such as the Eiffel Tower and the Golden Gate

Bridge. Additionally, we notice that the cityscape characteristics and street patterns are greatly

different among the cities of Singapore, Hong Kong, Prague and Tokyo.
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Figure 6. Visual similarity matrix of the 18 cities. The scores in the similarity matrix are calculated based on the confusion matrix,
where the values and symmetry position along the diagonal were added up.
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similarity scores are connected with blue lines.
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Similarly, following the same pipeline, we used image patches, which show only particular objects in

the photos, as the training samples for the 18-city classification task. In this case, we took the car as an

example to explore the most city-informative cars. Figure 9 presents the most ‘confident’ car samples for

each of the 18 cities. Intuitively, vehicles around the world should be visually similar, because car

manufacturing is a global industry. Interestingly, as city-informative urban public transportation,
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taxis, police cars and ambulances have been detected, which is consist with common sense because their

appearances are different from each other among cities. Specifically, in Bangkok, Barcelona, Beijing,

Hong Kong, London, New York, Singapore, Tokyo and Toronto, the taxis have been explored and

identified significantly. Among them, for Bangkok, Hong Kong and Tokyo, more than one type of

taxi has been detected. Additionally, we noted that people’s preference for vehicle types are indeed

different in the same cities. Cars in London are mostly retro-style and old-fashioned. In Paris, there

are many racing and luxury cars. In Rome, we found large volumes of tiny cars, and in Moscow, the

cars were always covered by snow.
4. Discussion
4.1. Understanding the personality and uniqueness of a city
The visual built environment reveals the personality and uniqueness of a place [1,45]. A single type of

landmark and architecture cannot represent the urban identity comprehensively and the symbol of a

city should be diverse and various to make it attracting, active and vital [1,46]. Previous studies

attempted to understand the city uniqueness from the perspective of street details [4], landmarks [47]

and areas of interest [48].
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In our case study, various visual cues of the 18 cities have been explored, not just in terms of

landmarks but also including historical architecture, religious sites, unique urban scenes, unusual

natural landscapes and distinct objects. The results achieved are mostly attributed to the ability of

DCNN in learning and representing high-level visual features of the images. We believe that our

results are of importance both to those working in urban management and design—in giving a

complete overview of the city features that are unique and distinct from others and develop the brand

image of a city for city development and tourism management—and also to geographers in general,

in throwing light on understanding how a place is formed and shaped for place formalization in the

process of human–place interaction.

4.2. Street-level imagery serves as an ideal proxy to represent the locale of a place
Enabled by the proliferation of wireless communication and mobile networking, the coming big-data era

has led to the production of a considerable amount of geo-tagged images, such as Google Street View

(GSV) images and images from social media services, which have been blanketing the all-round

landscape of the urban area, providing new opportunities to enrich place semantics [49,50].

From this study, we conclude that street-level imagery involves visual information beyond different

types of objects, uncovering the culture, history, religion, status of development, etc., of places. With
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appropriate computational tools, street-level imagery serves as an ideal proxy to represent the locale of

places, to understand different types of places, such as natural landscapes, built environments and indoor

spaces, and exhibits great potential for a variety of disciplines.

4.3. Deep learning learns knowledge about the visual characteristics of a place
The framework was implemented via a discriminative classification task using a DCNN model. From the

results, we can see that, for instance, taxis with different angles of view or even just parts shown in the

image can be identified by the model as the most city-informative scenes or objects, which has

demonstrated the model’s ability to learn invariant features of an object. This ability is essential for

this work in mining city-informative objects. Additionally, unlike the behaviour of traditional

computer vision features in object recognition tasks, which relies on consistent features of an object,

such as shape and colour, the DCNN-based model learns various stylistic information. For example,

scenes including Tower Bridge or red telephone boxes are believed to be the most ‘London style’ for

the model, but these two scenes have no common features. To some extent, we consider that DCNN

has learned concepts and high-level representations of cityscapes.

The method proposed in this study to learn the visual knowledge about places has been

demonstrated at a global city level. Similarly, it is also possible to compare different cities in the same

country in order to learn how urban planning policy can have an impact on the appearance of the

modern city. For instance, the fact that China is facing a problem of ‘thousands of cities show the

same’ has been discussed widely [51]. It is of great potential to validate this question or further

evaluate the similarity of these cities by employing the presented method. Additionally, it is

promising to apply and generalize this method to the study of different scales, such as

neighbourhood scale and indoor scale, to enable more insight into urban design and architectural design.

4.4. Limitation of the proposed framework
The performance of the proposed framework depends largely on the representativeness of the data source

used. Crowd-sourced data are always biased towards a group of people that generates the data. For instance,

the photos in the Panoramio dataset used in this study are mainly contributed by tourists and

photographers, who will have a different perspective of a city’s visual feature from the local residents. A

single data source is therefore difficult describing the objective visual aspects of a city. Future studies are

expected to integrate multiple data sources, e.g. Google Street View imagery, to represent the place

comprehensively.
5. Conclusion
Formalizing the visual features, salient scenes and unique styles of places is crucial to urban design and

urban management. This study proposes an image data-driven framework to learn visual knowledge of

places and explore place-informative scenes and objects comprehensively, which can be applied to places

of different types and scales, such as inter-city level, neighbourhood level and indoor level. The

framework will provide the opportunities to the research of place formalization and place semantics.

In the case study, we investigated 18 cities worldwide with more than 2 million social media photos

and explored unique visual features of each city including landmarks, historical architecture, religious

sites, unique urban scenes, unusual natural landscapes, etc. In future works, we will look deeper into

the spatial distribution of these unique visual features of different types for each city, and seek

connections between visual features and the culture, geography and historical evolution of a city. The

results of the case study support urban design practices and illustrate the value of employing machine

learning methods to understand how cities are developed and formed uniquely.

This study also demonstrates the value of street-level imagery in representing the visual built

environment of a place and the outstanding performance of DCNN in learning and representing the

concepts and high-level visual knowledge of street-level imagery. The cultural, historical, religious and

development status of a place can be potential uncovered through street-level imagery by employing

DCNN.
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