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Abstract

Recent progress of deep neural networks in computer vision and machine learning has
enabled transformative applications across robotics, healthcare, and security. However,
despite the superior performance of the deep neural networks, it remains challenging to
understand their inner workings and explain their output predictions. This thesis investi-
gates several novel approaches for opening up the “black box” of neural networks used
in visual recognition tasks and understanding their inner working mechanism. I �rst show
that objects and other meaningful concepts emerge as a consequence of recognizing scenes.
A network dissection approach is further introduced to automatically identify the internal
units as the emergent concept detectors and quantify their interpretability. Then I describe
an approach that can ef�ciently explain the output prediction for any given image. It sheds
light on the decision-making process of the networks and why the predictions succeed or
fail. Finally, I show some ongoing efforts toward learning ef�cient and interpretable deep
representations for video event understanding and some future directions.

Thesis Supervisor: Antonio Torralba
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Recent progress of deep neural networks in computer vision and machine learning has

enabled transformative applications across robotics, healthcare, and security. However,

despite the superior performance of the deep neural networks, it remains challenging to

understand their inner workings and explain their output predictions.

Deep neural network models such as Convolutional Neural Networks (CNNs) are often

criticized as being black boxes that lack interpretability, because of their millions of unex-

plained model parameters. The interpretability of AI models is closely relevant to various

important issues, for example the safety of the AI models in critical applications such as

autonomous driving and medical image diagnosis, and the fairness and bias of AI models

which potentially result to social and moral impacts. Thus lacking interpretability greatly

limits the usage of the complex models for wider Arti�cial Intelligence (AI) applications.

This Ph.D. thesis work advances the interpretable representation learning, with the goal

of better understanding the interpretability of the deep learning models used in computer

vision. To open up the black boxes of the deep neural networks, this work develops meth-

ods for visualizing and interpreting their internal representations, then proposes a general

framework for quantifying the interpretability of any given deep visual representations. To

better investigate the decision making of the networks, this work further designs a simple

yet effective approach for generating visual explanations for the prediction made by the

deep model, by highlighting the most informative image regions. Furthermore, in order to

go from image recognition to event understanding in videos, this work constructs a new
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ef�cient and interpretable deep models for video recognition.

Comprehending the visual world in a single glance is one of the most magni�cent feats

of human intelligence. By sampling the scene dozens of times per second, we are exposed

to millions of natural images in the course of a year. This rich and diverse visual experi-

ence contained in the scene context guides our interpretation of the world and shapes our

knowledge of the reality. Inspired by this, recent deep learning models build their inter-

nal representation in a data-driven approach of learning from millions of training samples

from large-scale scene datasets. Generalized from millions of training samples, many of

the visual recognition models powered by deep neural networks have achieved human-level

performance.

An AI model achieves human-level visual recognition, thus it is likely enbale to learn to

identify and disentangle the underlying explanatory factors in the observed input data. So

the central question about learning interpretable representations iswhat are the underlying

explanatory factors when the deep neural networks are trained to recognize the objects or

scenes, and furthermore,are these factors are meaningful and interpretable to human or

not.

In this thesis, we show that there are various internal units emerged as detectors to detect

visual concepts at multiple levels: the units at lower layers are detecting edges or texture

while the units at higher layers are detecting more semantically meaningful concepts such

as bicycle wheel or dog head. We develop methods that interpret the meaning of each unit

through human annotation or automatically by measuring the degree of alignment between

activation and a list of concepts. We further �nd that the meaningful and interpretable units

emerge in the deep visual representations with various network architectures trained from

a wide range of supervision tasks. Finally we show that the interpreted units can be used

to provide explicit explanations for a prediction made by a CNN. Our results highlight that

interpretability is an important property of deep neural networks that provides new insights

into their hierarchical structure.
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1.1 Thesis Outline

This thesis starts from building large-scale scene centric datasets Places and ADE20K,

which is the foundation for training and benchmarking the deep neural networks. Then

this thesis introduces various approaches developed to interpret the deep models trained for

recognizing objects, scenes, and various other supervision tasks. Speci�cally this thesis is

organized in following chapters:

Chapter 2 describes thePlaces Database[121,122], the �rst ever massive-scale image

dataset containing tens of millions of scene images. This dataset has established the most

comprehensive set of benchmarks for scene recognition in the vision community. It also

provides a training set other than the ImageNet where CNNs are able to be trained from

scratch. It lays the foundation for the comparison of deep visual representations trained for

classifying scenes and objects in the Chapter 4 and Chapter 5.

Chapter 3 presentsADE20K dataset[124], a subset of Places Database which has 22K

images with precise pixel-wise annotations of scenes, objects, parts of objects. This dataset

allows training deep neural networks for pixel-wise semantic segmentation. In Chapter 5

this dataset is used as part of the testing dictionary to generate the interpretation of the

individual units in the deep visual representations.

Chapter 4 compares the deep visual representations in the CNN trained to classify ob-

jects and the CNN trained to classify scenes [119]. We show that object detection emerges

inside the CNN trained to recognize scenes, even more than when trained to classify objects

on ImageNet. This result is interesting because objects are discovered as the explanatory

and interpretable factors inside a network when it is trained to solve the scene classi�cation.

It shows that the network learns to disentangle the meaningful factors to solve the task it is

being trained for.

Chapter 5 develops a method calledNetwork Dissection[5] to measure the interpretabil-

ity of any given deep visual representations. We de�ne the interpretability of individual

unit as the degree of alignment between the unit activation and the prede�ned list of vi-

sual concepts. We apply this method to evaluate and compare the interpretability of deep

visual representations trained from supervised learning and self-supervised learning. We
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further examine how different training regularizers and network designs affect the unit in-

terpretability.

Chapter 6 describes a method calledClass Activation Mapping[120] to explain the �nal

prediction given by the classi�cation network. The method highlights the most informative

image regions relevant to the prediction, by leveraging the internal representation of the

network.

Chapter 7 extends the interpretable representation learning from image recognition to

video understanding. An ef�cient and intepretable neural representation calledTemporal

Relational Network[118] is proposed for activity recognition in videos.

Chapter 8 offers discussion and future work.

1.2 Related Work

We have a brief survey on several lines of work which are relevant to the topics covered in

the thesis work.

1.2.1 The Rise of the Large-Scale Image Datasets

Image dataset is the driving force for novel models and progress made for visual recog-

nition. What does it take to reach human-level recognition with a machine-learning algo-

rithm? In the case of supervised learning, the problem is two-fold. First, the algorithm

must be suitable for the task, such as Convolutional Neural Networks in the large scale

visual recognition [48, 122] and Recursive Neural Networks for natural language process-

ing [40, 60]. Second, it must have access to a training dataset of appropriate coverage

(quasi-exhaustive representation of classes and variety of exemplars) and density (enough

samples to cover the diversity of each class). The optimal space for these datasets is often

task-dependent, but the rise of multi-million-item sets has enabled unprecedented perfor-

mance in many domains of arti�cial intelligence.

Convolutional Neural Networks [48,52] have likewise achieved near human-level visual

recognition, trained on 1.2 million object [15, 36, 79] and 2.5 million scene images [122].

Expansive coverage of the space of classes and samples allows getting closer to the right
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ecosystem of data that a natural system, like a human, would experience. The history of

image datasets for scene recognition also sees the rapid growing in the image samples as

follows:

The �rst benchmark for scene recognition was the Scene15 database [50], extended

from the initial 8 scene dataset in [69]. This dataset contains only 15 scene categories with

a few hundred images per class, and current classi�ers are saturated, reaching near human

performance with 95%. The MIT Indoor67 database [76] with 67 indoor categories and

the SUN (Scene Understanding, with 397 categories and 130,519 images) database [108]

provided a larger coverage of place categories, but failed short in term of quantity of data

needed to feed deep learning algorithms. To complement large object-centric datasets such

as ImageNet [15], we build the Places dataset described in this thesis. Places is the other

dataset where people is able to train modern deep neural networks from scratch besides

ImageNet.

Meanwhile, the Pascal VOC dataset [23] is one of the earliest image dataset with di-

verse object annotations in scene context. The Pascal VOC challenge has greatly advanced

the development of models for object detection and segmentation tasks. Nowadays, COCO

dataset [56] focuses on collecting object instances both in polygon and bounding box an-

notations for images depicting everyday scenes of common objects. The recent Visual

Genome dataset [47] aims at collecting dense annotations of objects, attributes, and their

relationships. ADE20K [124] proposed in the thesis collects precise dense annotation of

scenes, objects, parts of objects with a large and open vocabulary, which greatly enhance

the diversity and richness of image annotations. Altogether, annotated datasets further en-

able arti�cial systems to learn visual knowledge linking parts, objects and scene context.

1.2.2 Visualizing and Interpreting the Deep Neural Networks

As deep neural networks surpass human on various tasks, people start to explore why these

deep models work so well and what have been learned inside. Recently there sees a grow-

ing number of work on understanding deep neural networks. The relevant work can be

categorized as following three aspects:
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Visualizing deep visual representations. Though CNN models are notoriously known

as black boxes, a growing number of techniques have been developed to visualize the inter-

nal representations of convolutional neural networks. The behavior of a CNN can be visu-

alized by sampling image patches that maximize activation of hidden units [31, 112, 119],

or by using variants of backpropagation to identify or generate salient image features

[58, 88, 112]. Back-propagation together with a natural image prior can be used to in-

vert a CNN layer activation [59], and an image generation network can be trained to invert

the deep features by synthesizing the input images [20]. [66] further synthesizes the pro-

totypical images for individual units by learning a feature code for the image generation

network from [20]. These visualizations reveal the image patterns that have been learned

in a deep visual representation and provide a qualitative guide to the interpretation and in-

terpretability of units. In [119], a quantitative measure of interpretability was introduced:

human evaluation of visualizations to determine which individual units behave as object de-

tectors in a network trained to classify scenes. However, human evaluation is not scalable

to increasingly large networks such as ResNet [37], with more than 100 layers. Therefore

the aim of the thesis work is to develop methods to go from qualitative visualization to

quantitative interpretation.

Analyzing the properties of deep visual representations. Various intrinsic properties

of deep visual representations have been explored. Much research has focused on studying

the power of CNN layer activations to be used as generic visual features for classi�ca-

tion [3, 78]. The transferability of activations for a variety of layers has been analyzed,

and it has been found that higher layer units are more specialized to the target task [110].

Susceptibility to adversarial input reveals that discriminative CNN models are fooled by

particular image patterns [67, 95]. Analysis of correlation between different random ini-

tialized networks reveal that many units converge to the same set of representations after

training [54]. The question of how representations generalize has been investigated by

showing that a CNN can easily �t a random labeling of training data even under explicit

regularization [113]. Our thesis work focuses on another less explored property of deep

visual representations: interpretability.

Unsupervised learning of deep visual representations. Recent work on unsupervised
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learning or self-supervised learning exploits the correspondence structure that comes for

free from unlabeled images to train networks from scratch [2,17,43,68,105]. For example,

CNN is trained by predicting image context [17], by colorizing gray images [116,117], by

solving image puzzle [68], and by associating the images with ambient sounds [71]. The

resulting deep visual representations learned from different unsupervised learning tasks are

compared by evaluating them as generic visual features on classi�cation datasets such as

Pascal VOC. Chapter 5 provides an alternative approach to compare deep visual represen-

tations in terms of their interpretability, beyond just their discriminative power.

1.2.3 Models for Activity Recognition in Videos

Convolutional Neural Networks for Activity Recognition. Activity recognition in videos

is a core problem in computer vision. With the rise of deep convolutional neural networks

(CNNs) which achieve state-of-the-art performance on image recognition tasks [48, 122],

many works have looked into designing effective deep convolutional neural networks for

activity recognition [9,19,45,89,98,103]. For instance, various approaches of fusing RGB

frames over the temporal dimension are explored on the Sport1M dataset [45]. Two stream

CNNs with one stream of static images and the other stream of optical �ows are proposed

to fuse the information of object appearance and short-term motions [89]. 3D convolu-

tional networks [98] use 3D convolution kernels to extract features from a sequence of

dense RGB frames. Temporal Segment Networks sample frames and optical �ow on dif-

ferent time segments to extract information for activity recognition [103]. A CNN+LSTM

model, which uses a CNN to extract frame features and an LSTM to integrate features

over time, is also used to recognize activities in videos [19]. Recently, I3D networks [9]

use two stream CNNs with in�ated 3D convolutions on both dense RGB and optical �ow

sequences to achieve state of the art performance on the Kinetics dataset [46]. There are

several important issues with existing CNNs for action recognition: 1) The dependency on

beforehand extraction of optical �ow lowers the ef�ciency of the recognition system; 2)

The 3D convolutions on sequences of dense frames are computationally expensive, given

the redundancy in consecutive frames; 3) Since sequences of frames fed into the network
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are usually limited to 20 to 30 frames, it is dif�cult for the networks to learn long-term

temporal relations among frames. To address these issues, the Temporal Relation Network

proposed in Chapter 7 sparsely samples individual frames and then learns their causal re-

lations, which is much more ef�cient than sampling dense frames and convolving them.

We show that TRN-equipped networks can ef�ciently capture temporal relations at multi-

ple time scales and outperform dense frame-based networks using only sparsely sampled

video frames.

Temporal Information in Activity Recognition . For activity recognition on many

existing video datasets such as UCF101 [92], Sport1M [45], THUMOS [33], and Kinet-

ics [46], the appearance of still frames and short-term motion such as optical �ow are the

most important information to identify the activities. Thus, activity recognition networks

such as Two Stream network [89] and the I3D network [9] are tailored to capture these

short-term dynamics of dense frames. Therefore, existing networks don't need to build

temporal relational reasoning abilities. On the other hand, recently there have been various

video datasets collected via crowd-sourcing, which focus on sequential activity recogni-

tion: Something-Something dataset [34] is collected for generic human-object interaction.

It has video classes such as `Dropping something into something', `Pushing something with

something', and even `Pretending to open something without actually opening it'. Jester

dataset [1] is another recent video dataset for gesture recognition. Videos are recorded by

crowd-source workers performing 27 kinds of gestures such as `Thumbing up', `Swiping

Left', and `Turning hand counterclockwise'. Charades dataset is also a high-level human

activity dataset that collects videos by asking crowd workers to perform a series of home

activities and then record themselves [86]. For recognizing the complex activities in these

three datasets, it is crucial to integrate temporal relational reasoning into the networks. Be-

sides, many previous works model the temporal structures of videos for action recognition

and detection using bag of words, motion atoms, or action grammar [27, 28, 75, 101, 102].

Instead of designing temporal structures manually, we use a more generic structure to learn

the temporal relations in end-to-end training. One relevant work on modeling the cause-

effect in videos is [104]. [104] uses a two-stream siamese network to learn the transforma-

tion matrix between two frames, then uses brute force search to infer the action category.
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Thus the computation cost is high. Ideally we want to have a deep neural network model

which are ef�cient to train and test on videos.
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Chapter 2

Places: A 10 Million Image Database for

Scene Recognition

For an agent acting into the world, there is no doubt that object and event recognition

should be a primary goal of its visual system. But knowing the place or context in which

the objects appear is as equally important for an intelligent system to understand what

might have happened in the past and what may happen in the future. For instance, a table

inside a kitchen can be used to eat or prepare a meal, while a table inside a classroom is

intended to support a notebook or a laptop to take notes.

Whereas most datasets have focused on object categories (providing labels, bound-

ing boxes or segmentations), here we describe the Places database, a quasi-exhaustive

repository of 10 million scene photographs, labeled with 434 scene semantic categories,

comprising about 98 percent of the type of places a human can encounter in the world.

Places provides several benchmarks for AI models to learn to recognize scene context in

the wild, which greatly enhance their capacity to reach human-level recognition. Further-

more, Places is also the other large-scale image dataset where researchers are able to train

CNNs from scratch besides ImageNet. In later chapter we conduct a comparison study to

analyze the difference between the deep visual representation learned to recognize scenes

and the one learned to recognize objects.

Image samples from Places Database are shown in Fig. 2-1 while Fig. 2-2 shows the

number of images per category, sorted in decreasing order. In this chapter we introduce the

33



� �
�����������	�
��
�������	�
����
�����	�
� ������	������	���	���� ������	����

�

���
��
����� �������	��
���������
��
����� ���
��������
������� ��

�
�����
�����������
������
�������

Figure 2-1: Image samples from four scene categories grouped by queries to illustrate the
diversity of the dataset. For each query we show 9 annotated images.

Figure 2-2: Sorted image number per category in the Places Database. Places contains
10,624,928 images from 434 categories. Category names are shown for every 6 intervals.

construction of the dataset and the scene recognition benchmarks in detail.

2.1 Dataset Construction

Since the SUN database [108] has a rich scene taxonomy, the Places database has inherited

the same list of scene categories. To generate the query of image URL, 696 common

adjectives (messy, spare, sunny, desolate, etc), manually selected from a list of popular

adjectives in English, are combined with each scene category name and are sent to three

image search engines (Google Images, Bing Images, and Flickr). Adding adjectives to the

queries allows us to download a larger number of images than what is available in ImageNet

and to increase the diversity of visual appearances. We then remove duplicated URLs and

download the raw images with unique URLs. To date, more than 40 million images have
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been downloaded. Only color images of 200� 200 pixels or larger are kept. PCA-based

duplicate removal is conducted within each scene category in the Places database and across

the same scene category in the SUN database, which ensures that Places and the SUN do

not contain the same images, allowing us to combine the two datasets.

The images that survive this initial selection are sent to Amazon Mechanical Turk for

two rounds of individual image annotation. For a given category name, its de�nition as

in [108], is shown at the top of a screen, with a question likeis this a living room scene?

A single image at a time is shown centered in a large window, and workers are asked to

press a Yes or No key. For the �rst round of labeling, the default answer is set to No,

requiring the worker to actively pick up the positive images. The positive images resulting

from the �rst round annotation are further sent for a second round annotation, in which the

default answer is set to Yes (to pick up the remaining negative images). In each HIT(one

assignment for each worker), 750 downloaded images are included for annotation, and an

additional 30 positive samples and 30 negative samples with ground truth from the SUN

database are also randomly injected as control. Valid HITs kept for further analyses require

an accuracy of 90% or higher on these control images. As a result of the previous round

of image annotation, there were 53 million remaining downloaded images not assigned

to any of the 476 scene categories. Therefore, a third annotation task was designed to

reclassify then re-annotate those images, using a machine learning in the loop approach.

The �nal round of annotation is to merge some ambiguous pairs of categories and further

differentiate the images from the categories with shared content.

Finally the Places database was annotated with over 10 millions labeled exemplars

(10,624,928 images) from 434 place categories.

2.1.1 Places Benchmark

Here we describe four subsets of Places database as benchmarks. While Places205 and

Places88 are from [122], two new benchmarks have been added in journal version of the

Places database [121]: from the 434 categories, we selected 365 categories with more than

4000 images each to createPlaces365-StandardandPlaces365-Challenge. The details of
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each benchmark are the following:

� Places365-Standardhas 1,803,460 training images with the image number per class

varying from 3,068 to 5,000. The validation set has 50 images per class and the test

set has 900 images per class. Note that the experiments in this chapter are reported

on Places365-Standard.

� Places365-Challengecontains the same categories asPlaces365-Standard, but the

training set is signi�cantly larger with a total of 8 million training images. The

validation set and testing set are the same as the Places365-Standard. This subset

was released for the Places Challenge 20161 held in conjunction with the European

Conference on Computer Vision (ECCV) 2016, as part of the ILSVRC Challenge.

� Places205. Places205, described in [122], has 2.5 million images from 205 scene

categories. The image number per class varies from 5,000 to 15,000. The training

set has 2,448,873 total images, with 100 images per category for the validation set

and 200 images per category for the test set.

� Places88. Places88 contains the 88 common scene categories among the ImageNet

[79], SUN [108] and Places205 databases. Places88 contains only the images ob-

tained in round 2 of annotations, from the �rst version of Places used in [122]. We

call the other two corresponding subsets ImageNet88 and SUN88 respectively. These

subsets are used to compare performances across different scene-centric databases, as

the three datasets contain different exemplars per category (i.e. none of these three

datasets contain common images). Note that �nding correspondences between the

classes de�ned in ImageNet and Places brings some challenges. ImageNet follows

the WordNet de�nitions, but some WordNet de�nitions are not always appropriate

for describing places. For instance, the class 'elevator' in ImageNet refers to an ob-

ject. In Places, 'elevator' takes different meanings depending on the location of the

observer: elevator door, elevator interior, or elevator lobby. Many categories in Ima-

geNet do not differentiate between indoor and outdoor (e.g., ice-skating rink) while

1http://places2.csail.mit.edu/challenge.html
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Figure 2-3: Comparison of the number of images per scene category for the common 88
scene categories in Places, ImageNet, and SUN datasets.

in Places, indoor and outdoor versions are separated as they do not necessarily afford

the same function.

2.2 Comparing Scene-centric Datasets

Scene-centric datasets correspond to images labeled with a scene, or place name, as op-

posed to object-centric datasets, where images are labeled with object names. In this sec-

tion we use the Places88 benchmark to compare Places dataset with the tow other biggest

scene datasets: ImageNet88 and SUN88. Fig. 2-3 illustrates the differences among the

number of images found in the different categories for Places88, ImageNet88 and SUN88.

Notice that Places Database is the largest scene-centric image dataset so far. The next

subsection presents a comparison of these three datasets in terms of image diversity.

2.2.1 Dataset Diversity

Given the types of images found on the internet, some categories will be more biased than

others in terms of viewpoints, types of objects, or even image style [97]. However, bias

can be compensated with a high diversity of images, with many appearances represented

in the dataset. In this section we describe a measure of dataset diversity to compare how

diverse images from three scene-centric datasets (Places88, SUN88 and ImageNet88) are.
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Comparing datasets is an open problem. Even datasets covering the same visual classes

have notable differences providing different generalization performances when used to train

a classi�er [97]. Beyond the number of images and categories, there are aspects that are

important but dif�cult to quantify, like the variability in camera poses, in decoration styles

or in the type of objects that appear in the scene.

Although the quality of a database is often task dependent, it is reasonable to assume

that a good database should bedense(with a high degree of data concentration), anddi-

verse(it should include a high variability of appearances and viewpoints). Imagine, for

instance, a dataset composed of 100,000 images all taken within the same bedroom. This

dataset would have a very high density but a very low diversity as all the images will look

very similar. An ideal dataset, expected to generalize well, should have highdiversityas

well. While one can achieve high density by collecting a large number of images, diversity

is not an obvious quantity to estimate in image sets, as it assumes some notion of similar-

ity between images. One way to estimate similarity is to ask the questionare these two

images similar?However, similarity in the wild is a subjective and loose concept, as two

images can be viewed as similar if they contain similar objects, and/or have similar spatial

con�gurations, and/or have similar decoration styles and so on. A way to circumvent this

problem is to de�nerelative measuresof similarity for comparing datasets.

Several measures of diversity have been proposed, particularly in biology for charac-

terizing the richness of an ecosystem (see [39] for a review). Here, we propose to use a

measure inspired by theSimpson index of diversity[91]. The Simpson index measures the

probability that two random individuals from an ecosystem belong to the same species.

It is a measure of how well distributed the individuals across different species are in an

ecosystem, and it is related to the entropy of the distribution. Extending this measure for

evaluating the diversity of images within a category is non-trivial if there are no annotations

of sub-categories. For this reason, we propose to measure the relative diversity of image

datasets A and B based on the following idea: if set A is more diverse than set B, then two

random images from set B are more likely to be visually similar than two random samples
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from A. Then, the diversity of A with respect to B can be de�ned as

DivB (A) = 1 � p(d(a1; a2) < d (b1; b2)) (2.1)

wherea1; a2 2 A andb1; b2 2 B are randomly selected. With this de�nition of relative

diversity we have that A is more diverse than B if, and only if, DivB (A) > DivA (B ).

For an arbitrary number of datasets,A1; :::; AN , the diversity ofA1 with respect to

A2; :::; AN can be de�ned as

DivA 2 ;:::;A N (A1) = 1 � p(d(a11; a12) < min
i =2: N

d(ai 1; ai 2)) (2.2)

whereai 1; ai 2 2 A i are randomly selected,i = 2 : N .

We measured the relative diversities between SUN88, ImageNet88 and Places88 using

AMT. Workers were presented with different pairs of images and they had to select the

pair that contained the most similar images. The pairs were randomly sampled from each

database. Each trial was composed of 4 pairs from each database, giving a total of 12 pairs

to choose from. We used 4 pairs per database to increase the chances of �nding a similar

pair and avoiding users having to skip trials. AMT workers had to select the most similar

pair on each trial. We ran 40 trials per category and two observers per trial, for the 88

categories in common between ImageNet88, SUN88 and Places88 databases. Fig. 2-4a-

b shows some examples of pairs from the diversity experiments for the scene categories

playground (a) and bedroom (b). In the �gure only one pair from each database is shown.

We observed that different annotators were consistent in deciding whether a pair of images

was more similar than another pair of images.

Fig. 2-4c shows the histograms of relative diversity for all the 88 scene categories com-

mon to the three databases. If the three datasets were identical in terms of diversity, the

average diversity should be 2/3 for the three datasets. Note that this measure of diversity is

a relative measure between the three datasets. In the experiment, users selected pairs from

the SUN database to be the closest to each other50%of the time, while the pairs from the

Places database were judged to be the most similar only on17%of the trials. ImageNet88

pairs were selected33%of the time.
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Figure 2-4: Examples of pairs for the diversity experiment for a) playground and b) bed-
room. Which pair shows the most similar images? The bottom pairs were chosen in these
examples. c) Histogram of relative diversity per each category (88 categories) and dataset.
Places88 (in blue line) contains the most diverse set of images, then ImageNet88 (in red
line) and the lowest diversity is in the SUN88 database (in yellow line) as most images are
prototypical of their class.
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Figure 2-5: Cross dataset generalization of training on the 88 common scenes between
Places, SUN and ImageNet then testing on the 88 common scenes from: a) SUN, b) Ima-
geNet and c) Places database.

The results show that there is a large variation in terms of diversity among the three

datasets, showing Places to be the most diverse of the three datasets. The average relative

diversity on each dataset is0:83 for Places,0:67 for ImageNet88 and0:50 for SUN. The

categories with the largest variation in diversity across the three datasets wereplayground,

verandaandwaiting room.

2.2.2 Cross Dataset Generalization

As discussed in [97], training and testing across different datasets generally results in a

drop of performance due to the dataset bias problem. In this case, the bias between datasets

is due, among other factors, to the differences in the diversity between the three datasets.

Fig. 2-5 shows the classi�cation results obtained from the training and testing on different

permutations of the 3 datasets. For these results we use the features extracted from a pre-

trained ImageNet-CNN and a linear SVM. In all three cases training and testing on the

same dataset provides the best performance for a �xed number of training examples. As

the Places database is very large, it achieves the best performance on two of the test sets

when all the training data is used.
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2.3 CNNs for Scene Classi�cation

Given the impressive performance of the deep Convolutional Neural Networks (CNNs),

particularly on the ImageNet benchmark [48, 79], we choose three popular CNN architec-

tures, AlexNet [48], GoogLeNet [93], and VGG 16 convolutional-layer CNN [90], then

train them onPlaces205and Places365-Standardrespectively to create baseline CNN

models. The trained CNNs are named as PlacesSubset-CNN, i.e., Places205-AlexNet or

Places365-VGG.

All the Places-CNNs presented here were trained using the Caffe package [44] on

Nvidia GPUs Tesla K40 and Titan X2. Additionally, given the recent breakthrough per-

formances of the Residual Network (ResNet) on ImageNet classi�cation [38], we further

�ne-tunedResNet152on the Places365-Standard (termed as Places365-ResNet) and com-

pared it with the other trained-from-scratch Places-CNNs for scene classi�cation.

2.3.1 Results on Places205 and Places365

After training the various Places-CNNs, we used the �nal output layer of each network

to classify the test set images of Places205 and SUN205 (see [122]). The classi�cation

results for Top-1 accuracy and Top-5 accuracy are listed in Table 2.1. The Top-1 accuracy

is the percentage of the testing images where the top predicted label exactly match the

ground-truth label. The Top-5 accuracy is that the percentage of testing images where the

ground-truth label is among the top ranked 5 predicted labels given by an algorithm. Since

there are some ambiguity between some scene categories, the Top-5 accuracy is a more

suitable criteria of measuring scene classi�cation performance.

As a baseline comparison, we show the results of a linear SVM trained on ImageNet-

CNN features of 5000 images per category in Places205 and 50 images per category in

SUN205 respectively. We observe that Places-CNNs perform much better than the Im-

ageNet feature+SVM baseline while, as expected, Places205-GoogLeNet and Places205-

VGG outperformed Places205-AlexNet with a large margin, due to their deeper structures.

2All the Places-CNNs are available athttps://github.com/CSAILvision/places365
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Table 2.1: Classi�cation accuracy on the test set of Places205 and the test set of SUN205.
We use the class score averaged over 10-crops of each test image to classify the image.�
shows the top 2 ranked results from the Places205 leaderboard.

Test set of Places205 Test set of SUN205
Top-1 acc. Top-5 acc. Top-1 acc. Top-5 acc.

ImageNet-AlexNet feature+SVM 40.80% 70.20% 49.60% 80.10%
Places205-AlexNet 50.04% 81.10% 67.52% 92.61%
Places205-GoogLeNet 55.50% 85.66% 71.60% 95.01%
Places205-VGG 58.90% 87.70% 74.60% 95.92%
SamExynos� 64.10% 90.65% - -
SIAT MMLAB � 62.34% 89.66% - -

To date (Oct 2, 2016) the top ranked results on the test set of Places205 leaderboard3 is

64.10% on Top-1 accuracy and 90.65% on Top-5 accuracy. Note that for the test set of

SUN205, we did not �ne-tune the Places-CNNs on the training set of SUN205, as we

directly evaluated them on the test set of SUN.

We further evaluated the baseline Places365-CNNs on the validation set and test set

of Places365. The results are shown in Table 2.2. We can see that Places365-VGG and

Places365-ResNet have similar top performances compared with the other two CNNs4.

Even though Places365 has 160 more categories than Places205, the Top-5 accuracy of the

Places205-CNNs (trained on the previous version of Places [122]) on the test set only drops

by 2.5%.

To evaluate how extra categories bring improvements, we compute the accuracy for the

182 common categories between Places205 and Places365 (we merge some categories in

Places205 when building Places365 thus there are less common categories) for Places205-

CNN and Places365-CNN. On the validation set of Places365, we select the images of the

182 common categories, then use the aligned 182 outputs of the Places205-AlexNet and

Places365-AlexNet to predict the labels respectively. The Top1 accuracy for Places205-

AlexNet is 0.572, the one for Places365-AlexNet is 0.577. Thus Places365-AlexNet not

3http://places.csail.mit.edu/user/leaderboard.php
4The performance of the ResNet might result from �ne-tuning or under-training, as the ResNet is not

trained from scratch.
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Table 2.2: Classi�cation accuracy on the validation set and test set of Places365. We use
the class score averaged over 10-crops of each testing image to classify the image.

Validation Set of Places365 Test Set of Places365
Top-1 acc. Top-5 acc. Top-1 acc. Top-5 acc.

Places365-AlexNet 53.17% 82.89% 53.31% 82.75%
Places365-GoogLeNet 53.63% 83.88% 53.59% 84.01%
Places365-VGG 55.24% 84.91% 55.19% 85.01%
Places365-ResNet 54.74% 85.08% 54.65% 85.07%

Figure 2-6: The predictions given by the Places365-VGG for the images from the validation
set. The ground-truth label (GT) and the top 5 predictions are shown. The number beside
each label indicates the prediction con�dence.

only predicts more categories, but also has better accuracy on the previous existing cate-

gories.

Fig.2-6 shows the responses to examples correctly predicted by the Places365-VGG.

Notice that most of the Top-5 responses are very relevant to the scene description.

2.3.2 Generic Visual Features from Places-CNNs and ImageNet-CNNs

We further used the activation from the trained Places-CNNs as generic features for visual

recognition tasks using different image classi�cation benchmarks. Activations from the

higher-level layers of a CNN, also termeddeep features, have proven to be effective generic

features with state-of-the-art performance on various image datasets [18, 78]. But most of

the deep features are from the CNNs trained on ImageNet, which is mostly an object-centric

dataset.
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Here we evaluated the classi�cation performances of the deep features from scene-

centric CNNs and object-centric CNNs in a systematic way. The deep features from sev-

eral Places-CNNs and ImageNet-CNNs on the following scene and object benchmarks

are tested: SUN397 [108], MIT Indoor67 [76], Scene15 [50], SUN Attribute [73], Cal-

tech101 [26], Caltech256 [35], Stanford Action40 [109], and UIUC Event8 [53].

All of the presented experiments follow the standards in the mentioned papers. In the

SUN397 experiment [108], the training set size is 50 images per category. Experiments

were run on 5 splits of the training set and test set given in the dataset. In the MIT Indoor67

experiment [76], the training set size is 100 images per category. The experiment is run on

the split of the training set and test set given in the dataset. In the Scene15 experiment [50],

the training set size is 50 images per category. Experiments are run on 10 random splits

of the training set and test set. In the SUN Attribute experiment [73], the training set size

is 150 images per attribute. The reported result is the average precision. The splits of the

training set and test set are given in the paper. In Caltech101 and Caltech256 experiment

[26, 35], the training set size is 30 images per category. The experiments are run on 10

random splits of the training set and test set. In the Stanford Action40 experiment [109],

the training set size is 100 images per category. Experiments are run on 10 random splits of

the training set and test set. The reported result is the classi�cation accuracy. In the UIUC

Event8 experiment [53], the training set size is 70 images per category and the test set size

is 60 images per category. The experiments are run on 10 random splits of the training set

and test set.

Places-CNNs and ImageNet-CNNs have the same network architectures for AlexNet,

GoogLeNet, and VGG, but they are trained on scene-centric data (Places) and object-

centric data (ImageNet) respectively. For AlexNet and VGG, we used the 4096-dimensional

feature vector from the activation of the Fully Connected Layer (fc7 ) of the CNN. For

GoogLeNet, we used the 1024-dimensional feature vector from the response of the global

average pooling layer before softmax producing the class predictions. The classi�er in all

of the experiments is a linear SVM with the default parameter for all of the features.

Table 2.3 summarizes the classi�cation accuracy on various datasets for the deep fea-

tures of Places-CNNs and the deep features of the ImageNet-CNNs. The classi�er is a
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linear SVM with the same default parameters for the two deep feature layers (C=1) [24].

The Places-CNN features show impressive performance on scene-related datasets, outper-

forming the ImageNet-CNN features. On the other hand, the ImageNet-CNN features show

better performance on object-related image datasets. Importantly, our comparison shows

that Places-CNN and ImageNet-CNN have complementary strengths on scene-centric tasks

and object-centric tasks, as expected from the type of the datasets used to train these net-

works. On the other hand, the deep features from the Places365-VGG achieve the best

performance (63.24%) on the most challenging scene classi�cation dataset SUN397, while

the deep features of Places205-VGG performs the best on the MIT Indoor67 dataset. As

far as we know, they are the state-of-the-art scores achieved by a single feature + linear

SVM on those two datasets. Furthermore, we merge the 1000 classes from the ImageNet

and the 365 classes from the Places365-Standard to train a VGG (Hybrid1365-VGG). The

deep feature from the Hybrid1365-VGG achieves the best score averaged over all the eight

image datasets.
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Chapter 3

ADE20K for Scene Parsing

Semantic understanding of visual scenes is one of the holy grails of computer vision. The

emergence of large-scale image datasets like ImageNet [15], COCO [56] and Places [122],

along with the rapid development of the deep convolutional neural network (ConvNet)

approaches, have brought great advancements to visual scene understanding. Nowadays,

given a visual scene of a living room, a robot equipped with a trained ConvNet can accu-

rately predict the scene category. However, to freely navigate in the scene and manipulate

the objects inside, the robot has far more information to digest. It needs to recognize and

localize not only the objects like sofa, table, and TV, but also their parts, e.g., a seat of a

chair or a handle of a cup, to allow proper interaction, as well as to segment the stuff like

�oor, wall and ceiling for spatial navigation.

Scene parsing, or recognizing and segmenting objects and stuff in an image, remains

one of the key problems in scene understanding. Going beyond image-level recognition,

scene parsing requires a much denser annotation of scenes with a large set of objects. How-

ever, the current datasets have limited number of objects (e.g., COCO [56], Pascal [22])

and in many cases those objects are not the most common objects one encounters in the

world (like frisbees or baseball bats), or the datasets only cover a limited set of scenes

(e.g., Cityscapes [14]). Some notable exceptions are Pascal-Context [64] and the SUN

database [108]. However, Pascal-Context still contains scenes primarily focused on 20

object classes, while SUN has noisy labels at the object level.

Our goal of the work in this chapter is to collect a dataset that has densely annotated
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images (every pixel has a semantic label) with a large and an unrestricted open vocabulary.

The images in our dataset are manually segmented in great detail, covering a diverse set of

scenes, object and object part categories. The challenges for collecting such annotations

include �nding reliable annotators, as well as the fact that labeling is dif�cult if the class

list is not de�ned in advance. On the other hand, open vocabulary naming also suffers from

naming inconsistencies across different annotators. In contrast, our dataset was annotated

by a single expert annotator, providing extremely detailed and exhaustive image annota-

tions. On average, our annotator labeled 29 annotation segments per image, compared to

the 16 segments per image labeled by external annotators (like workers from Amazon Me-

chanical Turk). Furthermore, the data consistency and quality are much higher than that of

external annotators.

The chapter is organized as follows. Firstly we describe the construction and statistics

of the ADE20K dataset [124]. Then several semantic segmentation networks are evaluated

on the scene parsing benchmark of ADE20K as baselines. We further apply the scene

parsing networks to the tasks of automatic scene content removal and scene synthesis.

3.1 ADE20K: Fully Annotated Image Dataset

In this section, we describe our ADE20K dataset and analyze it through a variety of infor-

mative statistics.

3.1.1 Dataset summary

There are 20,210 images in the training set, 2,000 images in the validation set, and 3,000

images in the testing set. All the images are exhaustively annotated with objects. Many

objects are also annotated with their parts. For each object there is additional information

about whether it is occluded or cropped, and other attributes. The images in the validation

set are exhaustively annotated with parts, while the part annotations are not exhaustive over

the images in the training set. The annotations in the dataset are still growing. Sample

images and annotations from the ADE20K dataset are shown in Fig. 3-1.
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Figure 3-1: Images in ADE20K dataset are densely annotated in detail with objects and
parts. The �rst row shows the sample images, the second row shows the annotation of
objects, and the third row shows the annotation of object parts.

3.1.2 Image annotation

For our dataset, we are interested in having a diverse set of scenes with dense annota-

tions of all the objects present. Images come from the LabelMe [80], SUN datasets [108],

and Places [122] and were selected to cover the 900 scene categories de�ned in the SUN

database. Images were annotated by a single expert worker using the LabelMe inter-

face [80]. Fig. 3-2 shows a snapshot of the annotation interface and one fully segmented

image. The worker provided three types of annotations: object segments with names, object

parts, and attributes. All object instances are segmented independently so that the dataset

could be used to train and evaluate detection or segmentation algorithms. Datasets such

as COCO [56], Pascal [22] or Cityscape [14] start by de�ning a set of object categories

of interest. However, when labeling all the objects in a scene, working with a prede�ned

list of objects is not possible as new categories appear frequently (see �g. 3-5d). Here, the

annotator created a dictionary of visual concepts where new classes were added constantly

to ensure consistency in object naming.

Object parts are associated with object instances. Note that parts can have parts too,

and we label these associations as well. For example, the `rim' is a part of a `wheel', which

in turn is part of a `car'. A `knob' is a part of a `door' that can be part of a `cabinet'. The

total part hierarchy has a depth of 3. The object and part hierarchy is in the supplementary

materials.
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Figure 3-2: Annotation interface, the list of the objects and their associated parts in the
image.

3.1.3 Annotation consistency

De�ning a labeling protocol is relatively easy when the labeling task is restricted to a �xed

list of object classes, however it becomes challenging when the class list is open-ended. As

the goal is to label all the objects within each image, the list of classes grows unbounded.

Many object classes appear only a few times across the entire collection of images. How-

ever, those rare object classes cannot be ignored as they might be important elements for

the interpretation of the scene. Labeling in these conditions becomes dif�cult because we

need to keep a growing list of all the object classes in order to have a consistent naming

across the entire dataset. Despite the annotator's best effort, the process is not free of noise.

To analyze the annotation consistency we took a subset of 61 randomly chosen images

from the validation set, then asked our annotator to annotate them again (there is a time

difference of six months). One expects that there are some differences between the two

annotations. A few examples are shown in Fig 3-3. On average,82:4% of the pixels got

the same label. The remaining 17.6% of pixels had some errors for which we grouped into

three error types as follows:

� Segmentation quality: Variations in the quality of segmentation and outlining of

52



60.2% 95.1% 82.3% 89.7%

Im
ag

e
S

eg
. 1

S
eg

. 2
D

iff
er

en
ce

Figure 3-3: Analysis of annotation consistency. Each column shows an image and two
segmentations done by the same annotator at different times. Bottom row shows the pixel
discrepancy when the two segmentations are subtracted, and the percentage of pixels with
the same label. On average across all re-annotated images,82:4% of pixels got the same
label. In the example in the �rst column the percentage of pixels with the same label is
relatively low because the annotator labeled the same region as `snow' and `ground' during
the two rounds of annotation. In the third column, there were many objects in the scene
and the annotator missed some between the two segmentations.
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the object boundary. One typical source of error arises when segmenting complex

objects such as buildings and trees, which can be segmented with different degrees

of precision. 5.7% of the pixels had this type of error.

� Object naming: Differences in object naming (due to ambiguity or similarity be-

tween concepts, for instance, calling a big car a `car' in one segmentation and a

`truck' in the another one, or a `palm tree' a `tree'. 6.0% of the pixels had naming

issues. These errors can be reduced by de�ning a very precise terminology, but this

becomes much harder with a large growing vocabulary.

� Segmentation quantity: Missing objects in one of the two segmentations. There is

a very large number of objects in each image and some images might be annotated

more thoroughly than others. For example, in the third column of Fig 3-3 the annota-

tor missed some small objects in different annotations. 5.9% of the pixels are due to

missing labels. A similar issue existed in segmentation datasets such as the Berkeley

Image segmentation dataset [61].

The median error values for the three error types are: 4.8%, 0.3% and 2.6% showing

that the mean value is dominated by a few images, and that the most common type of error

is segmentation quality.

To further compare the annotation done by our single expert annotator and the AMT-

like annotators, 20 images from the validation set are annotated by two invited external

annotators, both with prior experience in image labeling. The �rst external annotator had

58.5% of inconsistent pixels compared to the segmentation provided by our annotator, and

the second external annotator had 75% of the inconsistent pixels. Many of these incon-

sistencies are due to the poor quality of the segmentations provided by external annotators

(as it has been observed with AMT which requires multiple veri�cation steps for quality

control [56]). For the best external annotator (the �rst one), 7.9% of pixels have inconsis-

tent segmentations (just slightly worse than our annotator), 14.9% have inconsistent object

naming and 35.8% of the pixels correspond to missing objects, which is due to the much

smaller number of objects annotated by the external annotator in comparison with the ones
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annotated by our expert annotator. The external annotators labeled on average 16 segments

per image while our annotator provided 29 segments per image.

3.1.4 Dataset statistics

Fig. 3-4a shows the distribution of ranked object frequencies. The distribution is similar to

a Zipf's law and is typically found when objects are exhaustively annotated in images [108].

They differ from the ones from datasets such as COCO or ImageNet where the distribution

is more uniform resulting from manual balancing.

Fig. 3-4b shows the distributions of annotated parts grouped by the objects they belong

to and sorted by frequency within each object class. Most object classes also have a non-

uniform distribution of part counts. Fig. 3-4c and Fig. 3-4d show how objects are shared

across scenes and how parts are shared by objects. Fig. 3-4e shows the variability in the

appearances of the part `door'.

The mode of the object segmentations is shown in Fig. 3-5a and contains the four ob-

jects (from top to bottom): `sky', `wall', `building' and `�oor'. When using simply the

mode to segment the images, it gets, on average, 20.9% of the pixels of each image right.

Fig. 3-5b shows the distribution of images according to the number of distinct classes and

instances. On average there are 19.5 instances and 10.5 object classes per image, larger

than other existing datasets (see Table 3.1). Fig. 3-5c shows the distribution of parts.

As the list of object classes is not prede�ned, there are new classes appearing over time

of annotation. Fig. 3-5d shows the number of object (and part) classes as the number of

annotated instances increases. Fig. 3-5e shows the probability that instancen + 1 is a new

class after labelingn instances. The more segments we have, the smaller the probability

that we will see a new class. At the current state of the dataset, we get one new object class

every 300 segmented instances.

3.1.5 Comparison with other datasets

We compare ADE20K with existing datasets in Tab. 3.1. Compared to the largest anno-

tated datasets, COCO [56] and Imagenet [79], our dataset comprises of much more diverse
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Figure 3-4: a) Object classes sorted by frequency. Only the top 270 classes with more than
100 annotated instances are shown. 68 classes have more than a 1000 segmented instances.
b) Frequency of parts grouped by objects. There are more than 200 object classes with
annotated parts. Only objects with 5 or more parts are shown in this plot (we show at most
7 parts for each object class). c) Objects ranked by the number of scenes they are part of. d)
Object parts ranked by the number of objects they are part of. e) Examples of objects with
doors. The bottom-right image is an example where the door does not behave as a part.
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Figure 3-5: a) Mode of the object segmentations contains `sky', `wall', `building' and
`�oor'. b) Histogram of the number of segmented object instances and classes per image.
c) Histogram of the number of segmented part instances and classes per object. d) Number
of classes as a function of segmented instances (objects and parts). The squares represent
the current state of the dataset. e) Probability of seeing a new object (or part) class as a
function of the number of instances.
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Table 3.1: Comparison of semantic segmentation datasets.

Images Obj. Inst. Obj. Cls. Part Inst. Part Cls. Obj. Cls. per Img.
COCO 123,287 886,284 91 0 0 3.5
ImageNet� 476,688 534,309 200 0 0 1.7
NYU Depth V2 1,449 34,064 894 0 0 14.1
Cityscapes 25,000 65,385 30 0 0 12.2
SUN 16,873 313,884 4,479 0 0 9.8
OpenSurfaces 22,214 71,460 160 0 0 N/A
PascalContext 10,103 � 104,398�� 540 181,770 40 5.1
ADE20K 22,210 434,826 2,693 175,961 476 9.9

� has only bounding boxes (no pixel-level segmentation). Sparse annotations.
�� PascalContext dataset does not have instance segmentation. In order to estimate the number of instances, we �nd connected compo-
nents (having at least 150pixels) for each class label.

scenes, where the average number of object classes per image is 3 and 6 times larger,

respectively. With respect to SUN [108], ADE20K is roughly 35% larger in terms of im-

ages and object instances. However, the annotations in our dataset are much richer since

they also include segmentation at the part level. Such annotation is only available for the

Pascal-Context/Part dataset [11,64] which contains 40 distinct part classes across 20 object

classes. Note that we merged some of their part classes to be consistent with our labeling

(e.g., we mark bothleft legandright leg as the same semantic partleg). Since our dataset

contains part annotations for a much wider set of object classes, the number of part classes

is almost 9 times larger in our dataset.

An interesting fact is that any image in ADE20K contains at least 5 objects, and the

maximum number of object instances per image reaches 273, and 419 instances, when

counting parts as well. This shows the high annotation complexity of our dataset.

3.2 Scene Parsing Benchmark and Networks

Based on the data of the ADEK20K, we construct scene parsing benchark. Scene parsing

is to segment the whole image densely into semantic classes, where each pixel is assigned

a class label such as the region oftreeand the region ofbuilding.

We select the top 150 categories ranked by their total pixel ratios1 in the ADE20K

1As the original images in the ADE20K dataset have various sizes, for simplicity we rescale those large-
sized images to make their minimum heights or widths as 512 in the SceneParse150 benchmark.
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Table 3.2: Baseline performance on the validation set of SceneParse150.

Networks Pixel Acc. Mean Acc. Mean IoU Weighted IoU
FCN-8s 71.32% 40.32% 0.2939 0.5733
SegNet 71.00% 31.14% 0.2164 0.5384
DilatedVGG 73.55% 44.59% 0.3231 0.6014
DilatedResNet-34 76.47% 45.84% 0.3277 0.6068
DilatedResNet-50 76.40% 45.93% 0.3385 0.6100
Cascade-SegNet 71.83% 37.90% 0.2751 0.5805
Cascade-DilatedVGG 74.52% 45.38% 0.3490 0.6108

dataset and build a scene parsing benchmark of ADE20K, termed asSceneParse150. Among

the 150 categories, there are 35 stuff classes (i.e., wall, sky, road) and 115 discrete object

classes (i.e., car, person, table). The annotated pixels of the 150 classes occupy 92.75%

of all the pixels of the dataset, where the stuff classes occupy 60.92%, and discrete object

classes occupy 31.83%.

As for baseline networks for scene parsing on our benchmark, we train several semantic

segmentation networks: SegNet [4], FCN-8s [57], DilatedVGG, DilatedResNet [10, 111],

and two cascade networks proposed in [124] where the backbone models are SegNet and

DilatedVGG.

The segmentation performance of the baseline networks on SceneParse150 is listed in

Table 3.2. Among the baselines, the networks based on dilated convolutions achieve better

results in general than FCN and SegNet. Using the cascade framework, the performance

further improves. In terms of mean IoU, Cascade-SegNet and Cascade-DilatedVGG out-

perform SegNet and DilatedVGG by 6% and 2.5%, respectively.

Qualitative scene parsing results from the validation set are shown in Fig. 3-6. We

observe that all the baseline networks can give correct predictions for the common, large

object and stuff classes, the difference in performance comes mostly from small, infrequent

objects and how well they handle details.
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Figure 3-6: Ground-truths, scene parsing results given by the baseline networks. All net-
works can give correct predictions for the common, large object and stuff classes, the dif-
ference in performance comes mostly from small, infrequent objects and how well they
handle details.
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Chapter 4

Comparing the Deep Visual

Representations for Objects and Scenes

When training a CNN to distinguish different object classes, it is unclear what the under-

lying representation should be. Objects have often been described using part-based repre-

sentations where parts can be shared across objects, forming a distributed code. However,

what those parts should be is unclear. For instance, one would think that the meaningful

parts of a face are the mouth, the two eyes, and the nose. However, those are simply func-

tional parts, with words associated with them; the object parts that are important for visual

recognition might be different from these semantic parts, making it dif�cult to evaluate how

ef�cient a representation is. In fact, the strong internal con�guration of objects makes the

de�nition of what is a useful part poorly constrained: an algorithm can �nd different and

arbitrary part con�gurations, all giving similar recognition performance.

Learning to classify scenes (i.e., classifying an image as being an of�ce, a restaurant, a

street, etc) using the Places dataset [122] gives the opportunity to study the internal repre-

sentation learned by a CNN on a task other than object recognition. In the case of scenes,

the representation is clearer. Scene categories are de�ned by the objects they contain and,

to some extent, by the spatial con�guration of those objects. For instance, the important

parts of a bedroom are the bed, a side table, a lamp, a cabinet, as well as the walls, �oor

and ceiling. Objects represent therefore a distributed code for scenes (i.e., object classes

are shared across different scene categories). Importantly, in scenes, the spatial con�gu-
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ration of objects, although compact, has a much larger degree of freedom. It is this loose

spatial dependency that, we believe, makes scene representation different from most object

classes (most object classes do not have a loose interaction between parts). While a CNN

has enough �exibility to learn any of those representations, if meaningful objects emerge

without supervision inside the inner layers of the CNN, there will be little ambiguity as to

which type of representation these networks are learning.

The main contribution of this chapter is to show that object detection emerges inside

a CNN trained to recognize scenes, even more than when trained with ImageNet. This

is surprising because our results demonstrate that reliable object detectors are found even

though, unlike ImageNet, no supervision is provided for objects. Although object discovery

with deep neural networks has been shown before in an unsupervised setting [51], here we

�nd that many more objects can be naturally discovered, in a supervised setting tuned to

scene classi�cation rather than object classi�cation. Importantly, the emergence of object

detectors inside the CNN suggests that a single network can support recognition at several

levels of abstraction (e.g., edges, texture, objects, and scenes) without needing multiple

outputs or a collection of networks.

4.1 ImageNet-CNN and Places-CNN

Convolutional neural networks have recently obtained astonishing performance on ob-

ject classi�cation [48] and scene classi�cation [122]. The ImageNet-CNN from [48] is

trained on 1.3 million images from 1000 object categories of ImageNet (ILSVRC 2012)

and achieves a top-1 accuracy of57:4%. With the same network architecture, Places-CNN

is trained on 2.4 million images from 205 scene categories of Places Database [122], and

achieves a top-1 accuracy of50:0%. The network architecture used for both CNNs, as pro-

posed in [48], is summarized in Table 4.11. Both networks are trained from scratch using

only the speci�ed dataset.

The deep features from Places-CNN tend to perform better on scene-related recognition

tasks compared to the features from ImageNet-CNN. For example, as compared to the

1We useunit to refer to neurons in the various layers andfeaturesto refer to their activations.

62



Table 4.1: The parameters of the network architecture used for ImageNet-CNN and Places-
CNN.

Layer conv1 pool1 conv2 pool2 conv3 conv4 conv5 pool5 fc6 fc7
Units 96 96 256 256 384 384 256 256 4096 4096

Feature 55� 55 27� 27 27� 27 13� 13 13� 13 13� 13 13� 13 6� 6 1 1

ImageNet-CNN

Places-CNN

pool1 pool2 pool5 fc7conv4conv3

Figure 4-1: Top 3 images producing the largest activation of units in each layer of
ImageNet-CNN (top) and Places-CNN (bottom).

Places-CNN that achieves 50.0% on scene classi�cation, the ImageNet-CNN combined

with a linear SVM only achieves40:8%on the same test set2 illustrating the importance of

having scene-centric data.

To further highlight the difference in representations, we conduct a simple experiment

to identify the differences in the type of images preferred at the different layers of each

network: we create a set of 200k images with an approximately equal distribution of scene-

centric and object-centric images3, and run them through both networks, recording the

activations at each layer. For each layer, we obtain the top 100 images that have the largest

average activation (sum over all spatial locations for a given layer). Fig. 4-1 shows the

top 3 images for each layer. We observe that the earlier layers such as pool1 and pool2

prefer similar images for both networks while the later layers tend to be more specialized

to the speci�c task of scene or object categorization. For layer pool2,55% and47% of

the top-100 images belong to the ImageNet dataset for ImageNet-CNN and Places-CNN.

Starting from layer conv4, we observe a signi�cant difference in the number of top-100

belonging to each dataset corresponding to each network. For fc7, we observe that78%

and24%of the top-100 images belong to the ImageNet dataset for the ImageNet-CNN and

Places-CNN respectively, illustrating a clear bias in each network.

In the following sections, we further investigate the differences between these networks,

2Scene recognition demo of Places-CNN is available athttp://places.csail.mit.edu/demo.
html . The demo has 77.3% top-5 recognition rate in the wild estimated from 968 anonymous user responses.

3100k object-centric images from the test set of ImageNet LSVRC2012 and 108k scene-centric images
from the SUN dataset [108].
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and focus on better understanding the nature of the representation learned by Places-CNN

when doing scene classi�cation in order to clarify some part of the secret to their great

performance.

4.2 Uncovering the CNN representation

The performance of scene recognition using Places-CNN is quite impressive given the dif-

�culty of the task. In this section, our goal is to understand the nature of the representation

that the network is learning.

4.2.1 Simplifying the input images

Simplifying images is a well known strategy to test human recognition. For example, one

can remove information from the image to test if it is diagnostic or not of a particular object

or scene (for a review see [8]). A similar procedure was also used by [96] to understand

the receptive �elds of complex cells in the inferior temporal cortex (IT).

Inspired by these approaches, our idea is the following: given an image that is correctly

classi�ed by the network, we want to simplify this image such that it keeps as little visual

information as possible while still having a high classi�cation score for the same category.

This simpli�ed image (named minimal image representation) will allow us to highlight

the elements that lead to the high classi�cation score. In order to do this, we manipulate

images in the gradient space as typically done in computer graphics [74]. We investigate

two different approaches described below.

In the �rst approach, given an image, we create a segmentation of edges and regions

and remove segments from the image iteratively. At each iteration we remove the segment

that produces the smallest decrease of the correct classi�cation score and we do this until

the image is incorrectly classi�ed. At the end, we get a representation of the original image

that contains, approximately, the minimal amount of information needed by the network to

correctly recognize the scene category. In Fig. 4-2 we show some examples of these min-

imal image representations. Notice that objects seem to contribute important information

for the network to recognize the scene. For instance, in the case of bedrooms these minimal
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Figure 4-2: Each pair of images shows the original image (left) and a simpli�ed image
(right) that gets classi�ed by the Places-CNN as the same scene category as the original
image. From top to bottom, the four rows show different scene categories: bedroom, audi-
torium, art gallery, and dining room.

image representations usually contain the region of the bed, or in the art gallery category,

the regions of the paintings on the walls.

Based on the previous results, we hypothesized that for the Places-CNN, some objects

were crucial for recognizing scenes. This inspired our second approach: we generate the

minimal image representations using the fully annotated image set of SUN Database [108]

(see section 4.3.1 for details on this dataset) instead of performing automatic segmentation.

We follow the same procedure as the �rst approach using the ground-truth object segments

provided in the database.

This led to some interesting observations: for bedrooms, the minimal representations

retained the bed in87% of the cases. Other objects kept in bedrooms were wall (28%)

and window (21%). For art gallery the minimal image representations contained paintings

(81%) and pictures (58%); in amusement parks, carousel (75%), ride (64%), and roller

coaster (50%); in bookstore, bookcase (96%), books (68%), and shelves (67%). These

results suggest that object detection is an important part of the representation built by the

network to obtain discriminative information for scene classi�cation.
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receptive Þeld sliding-window stimuli calibrated discrepancy maps 

discrepancy maps for top 10 images  

Figure 4-3: The pipeline for estimating the RF of each unit. Each sliding-window stimuli
contains a small randomized patch (example indicated by red arrow) at different spatial
locations. By comparing the activation response of the sliding-window stimuli with the
activation response of the original image, we obtain a discrepancy map for each image
(middle top). By summing up the calibrated discrepancy maps (middle bottom) for the top
ranked images, we obtain the actual RF of that unit (right).

4.2.2 Visualizing the receptive �elds of units and their activation pat-

terns

In this section, we investigate the shape and size of the receptive �elds (RFs) of the var-

ious units in the CNNs. While theoretical RF sizes can be computed given the network

architecture [57], we are interested in the actual, orempiricalsize of the RFs. We expect

the empirical RFs to be better localized and more representative of the information they

capture than the theoretical ones, allowing us to better understand what is learned by each

unit of the CNN.

Thus, we propose a data-driven approach to estimate the learned RF of each unit in

each layer. It is simpler than the deconvolutional network visualization method [112] and

can be easily extended to visualize any learned CNNs4.

The procedure for estimating a given unit's RF, as illustrated in Fig. 4-3, is as follows.

As input, we use an image set of 200k images with a roughly equal distribution of scenes

and objects (similar to Sec. 4.1). Then, we select the topK images with the highest activa-

tions for the given unit.

For each of theK images, we now want to identify exactly which regions of the image

lead to the high unit activations. To do this, we replicate each image many times with

small random occluders (image patches of size 11� 11) at different locations in the image.

4More visualizations are available athttp://places.csail.mit.edu/visualization
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Figure 4-4: The RFs of 3 units of pool1, pool2, conv4, and pool5 layers respectively for
ImageNet- and Places-CNNs, along with the image patches corresponding to the top acti-
vation regions inside the RFs.

Speci�cally, we generate occluders in a dense grid with a stride of 3. This results in about

5000 occluded images per original image. We now feed all the occluded images into the

same network and record the change in activation as compared to using the original image.

If there is a large discrepancy, we know that the given patch is important and vice versa.

This allows us to build a discrepancy map for each image.

Finally, to consolidate the information from theK images, we center the discrepancy

map around the spatial location of the unit that caused the maximum activation for the

given image. Then we average the re-centered discrepancy maps to generate the �nal RF.

In Fig. 4-4 we visualize the RFs for units from 4 different layers of the Places-CNN

and ImageNet-CNN, along with their highest scoring activation regions inside the RF. We

observe that, as the layers go deeper, the RF size gradually increases and the activation

regions become more semantically meaningful. Further, as shown in Fig. 4-5, we use the

RFs to segment images using the feature maps of different units. Lastly, in Table 4.2, we

compare the theoretical and empirical size of the RFs at different layers. As expected, the

actual size of the RF is much smaller than the theoretical size, especially in the later layers.

Overall, this analysis allows us to better understand each unit by focusing precisely on the

important regions of each image.
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Table 4.2: Comparison of the theoretical and empirical sizes of the RFs for Places-CNN
and ImageNet-CNN at different layers. Note that the RFs are assumed to be square shaped,
and the sizes reported below are the length of each side of this square, in pixels.

pool1 pool2 conv3 conv4 pool5
Theoretic size 19 67 99 131 195
Places-CNN actual size 17.8� 1.6 37.4� 5.9 52.1� 10.6 60.0� 13.7 72.0� 20.0
ImageNet-CNN actual size 17.9� 1.6 36.7� 5.4 51.1� 9.9 60.4� 16.0 70.3� 21.6

pool1

Places-CNN

pool2 conv4 pool5

ImageNet-CNN

Figure 4-5: Segmentation based on RFs. Each row shows the 4 most con�dent images for
some unit.

Figure 4-6: AMT interface for unit concept annotation. There are three tasks in each
annotation.
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4.2.3 Identifying the semantics of internal units

In Section 4.2.2, we found the exact RFs of units and observed that activation regions

tended to become more semantically meaningful with increasing depth of layers. In this

section, our goal is to understand and quantify the precise semantics learned by each unit.

In order to do this, we ask workers on Amazon Mechanical Turk (AMT) to identify the

common theme orconceptthat exists between the top scoring segmentations for each unit.

We expect the tags provided by naive annotators to reduce biases. Workers provide tags

without being constrained to a dictionary of terms that could bias or limit the identi�cation

of interesting properties.

Speci�cally, we divide the task into three main steps as shown in Fig. 4-6. We show

workers the top 60 segmented images that most strongly activate one unit and we ask them

to (1) identify the concept, or semantic theme given by the set of 60 images e.g., car,

blue, vertical lines, etc, (2) mark the set of images that do not fall into this theme, and

(3) categorize the concept provided in (1) to one of 6 semantic groups ranging from low-

level to high-level: simple elements and colors (e.g., horizontal lines, blue), materials and

textures (e.g., wood, square grid), regions ans surfaces (e.g., road, grass), object parts (e.g.,

head, leg), objects (e.g., car, person), and scenes (e.g., kitchen, corridor). This allows us

to obtain both the semantic information for each unit, as well as the level of abstraction

provided by the labeled concept.

To ensure high quality of annotation, we included 3 images with high negative scores

that the workers were required to identify as negatives in order to submit the task. Fig. 4-7

shows some example annotations by workers. For each unit, we measure its precision as

the percentage of images that were selected as �tting the labeled concept. In Fig. 4-8.(a)

we plot the average precision for ImageNet-CNN and Places-CNN for each layer.

In Fig. 4-8b-c we plot the distribution of concept categories for ImageNet-CNN and

Places-CNN at each layer. For this plot we consider only units that had a precision above

75% as provided by the AMT workers. Around60% of the units on each layer where

above that threshold. For both networks, units at the early layers (pool1, pool2) have more

units responsive to simple elements and colors, while those at later layers (conv4, pool5)
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have more high-level semantics (responsive more to objects and scenes). Furthermore,

we observe that conv4 and pool5 units in Places-CNN have higher ratios of high-level

semantics as compared to the units in ImageNet-CNN.

Fig. 4-9 provides a different visualization of the same data as in Fig. 4-8b-c. This

plot better reveals how different levels of abstraction emerge in different layers of both

networks. The vertical axis indicates the percentage of units in each layer assigned to each

concept category. ImageNet-CNN has more units tuned to simple elements and colors than

Places-CNN while Places-CNN has more objects and scenes. ImageNet-CNN has more

units tuned to object parts (with the maximum around conv4). It is interesting to note that

Places-CNN discovers more objects than ImageNet-CNN despite having no object-level

supervision.

4.3 Emergence of objects as the internal representation

As shown before, a large number of units in pool5 are devoted to detecting objects and

scene-regions (Fig. 4-9). But what categories are found? Is each category mapped to a

single unit or are there multiple units for each object class? Can we actually use this

information to segment a scene?

4.3.1 What object classes emerge

To answer the question of why certain objects emerge from pool5, we tested ImageNet-

CNN and Places-CNN on fully annotated images from the SUN database [108]. The SUN

database contains 8220 fully annotated images from the same 205 place categories used to

train Places-CNN. There are no duplicate images between SUN and Places. We use SUN

instead of COCO [56] as we need dense object annotations to study what the most infor-

mative object classes for scene categorization are, and what the natural object frequencies

in scene images are. For this study, we manually mapped the tags given by AMT workers

to the SUN categories.

Fig. 4-10a shows the distribution of objects found in pool5 of Places-CNN. Some ob-

jects are detected by several units. For instance, there are 15 units that detect buildings.
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Pool5, unit 77; Label:legs; Type: object part; Precision: 96%

Pool5, unit 76; Label: ocean; Type: scene; Precision: 93%

Pool5, unit 13; Label: Lamps; Type: object; Precision: 84%

Pool5, unit 22; Label: dinner table; Type: scene; Precision: 60%

Pool5, unit 112; Label: pool table; Type: object; Precision: 70%

Pool5, unit 168; Label: shrubs; Type: object; Precision: 54%

Figure 4-7: Examples of unit annotations provided by AMT workers for 6 units from pool5
in Places-CNN. For each unit the �gure shows the label provided by the worker, the type
of label, the images selected as corresponding to the concept (green box) and the images
marked as incorrect (red box). The precision is the percentage of correct images. The top
three units have high performance while the bottom three have low performance (< 75%).
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Figure 4-8: (a) Average precision of all the units in each layer for both networks as re-
ported by AMT workers. (b) and (c) show the number of units providing different levels of
semantics for ImageNet-CNN and Places-CNN respectively.
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Figure 4-9: Distribution of semantic types found for all the units in both networks. From
left to right, each plot corresponds to the distribution of units in each layer assigned to
simple elements or colors, textures or materials, regions or surfaces, object parts, objects,
and scenes. The vertical axis is the percentage of units with each layer assigned to each
type of concept.

Fig. 4-11 shows some units from the Places-CNN grouped by the type of object class they

seem to be detecting. Each row shows the top �ve images for a particular unit that produce

the strongest activations. The segmentation shows the regions of the image for which the

unit is above a certain threshold. Each unit seems to be selective to a particular appear-

ance of the object. For instance, there are 6 units that detect lamps, each unit detecting a

particular type of lamp providing �ner-grained discrimination; there are 9 units selective to

people, each one tuned to different scales or people doing different tasks.

Fig. 4-10b shows the distribition of objects found in pool5 of ImageNet-CNN. Ima-

geNet has an abundance of animals among the categories present: in the ImageNet-CNN,

72



0

5

10

15

0

5

10

15

bu
ild

in
g

   
 tr

ee
   

 g
ra

ss
   

 !o
or

   
 m

ou
nt

ai
n

   
 p

er
so

n
   

 p
la

nt
   

 w
at

er
   

 w
in

do
w

   
 c

ei
lin

g 
la

m
p

   
 p

itc
h

   
 r

oa
d

   
 a

rc
ad

e
   

 b
rid

ge
   

 c
ab

in
et

   
 c

ha
ir

   
 fo

od
   

 li
gh

th
ou

se
   

 p
at

h
   

 s
ky

   
 to

w
er

   
 w

al
l

   
 w

at
er

 to
w

er
   

 b
ed

   
 b

oo
kc

as
e

   
 c

ar
   

 c
ei

lin
g

   
 c

em
en

te
ry

   
 c

ol
um

n
   

 d
es

k
   

 d
es

k 
la

m
p

   
 "

el
d

   
 g

ra
nd

st
an

d
   

 g
ro

un
d

   
 ic

eb
er

g
   

 p
ho

ne
 b

oo
th

   
 r

ai
lin

g
   

 r
iv

er
   

 r
oc

ks
   

 s
an

d
   

 s
cr

ee
n

   
 s

ea
   

 s
ea

ts
   

 s
ho

w
ca

se
   

 s
no

w
y 

gr
ou

nd
   

 s
tr

ee
t

   
 s

w
im

m
in

g 
po

ol
   

 te
nt

   
 te

xt
   

 w
ar

dr
ob

e
   

 w
at

er
fa

ll
   

 w
in

dm
ill

do
g

   
 b

ird
   

 p
er

so
n

   
 w

he
el

   
 a

ni
m

al
 b

od
y

   
 !o

w
er

   
 g

ro
un

d
   

 h
ea

d
   

 le
gs

   
 a

ni
m

al
 fa

ce
   

 a
ni

m
al

 h
ea

d
   

 b
ui

ld
in

g
   

 c
ar

   
 c

at
   

 c
ei

lin
g

   
 fa

ce
   

 h
um

an
 fa

ce
   

 le
g

   
 m

on
ke

y
   

 p
la

nt
   

 p
la

nt
s

   
 p

ot
   

 r
oa

d
   

 s
ea

   
 to

w
er

   
 tr

ee
   

 w
at

er
   

 w
in

do
w

C
ou

nt
s

C
ou

nt
s

a) b)

Figure 4-10: Object counts of CNN units discovering each object class for (a) Places-CNN
and (b) ImageNet-CNN.

out of the 256 units in pool5, there are 15 units devoted to detecting dogs and several more

detecting parts of dogs (body, legs, ...). The categories found in pool5 tend to follow the

target categories in ImageNet.

Why do those objects emerge? One possibility is that the objects that emerge in pool5

correspond to the most frequent ones in the database. Fig. 4-12a shows the sorted distribu-

tion of object counts in the SUN database which follows Zipf's law. Fig. 4-12b shows the

counts of units found in pool5 for each object class (same sorting as in Fig. 4-12a). The

correlation between object frequency in the database and object frequency discovered by

the units in pool5 is 0.54. Another possibility is that the objects that emerge are the ob-

jects that allow discriminating among scene categories. To measure the set of discriminant

objects we used the ground truth in the SUN database to measure the classi�cation perfor-

mance achieved by each object class for scene classi�cation. Then we count how many

times each object class appears as the most informative one. This measures the number

of scene categories a particular object class is the most useful for. The counts are shown

in Fig. 4-12c. Note the similarity between Fig. 4-12b and Fig. 4-12c. The correlation is

0.84 indicating that the network is automatically identifying the most discriminative object

categories to a large extent.

Note that there are 115 units in pool5 of Places-CNN not detecting objects. This could

be due to incomplete learning or a complementary texture-based or part-based representa-

tion of the scenes. Therefore, although objects seem to be a key part of the representation

learned by the network, we cannot rule out other representations being used in combination

with objects.
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Figure 4-11: Segmentations using pool5 units from Places-CNN. Many classes are en-
coded by several units covering different object appearances. Each row shows the 5 most
con�dent images for each unit. The number represents the unit number in pool5.

4.3.2 Object Localization within the Inner Layers

Places-CNN is trained to do scene classi�cation using the output of the �nal layer of logistic

regression and achieves state-of-the-art performance. From our analysis above, many of the

units in the inner layers could perform interpretable object localization. Thus we could use

this single Places-CNN with the annotation of units to do both scene recognition and object

localization in a single forward-pass. Fig. 4-13 shows an example of the output of different

layers of the Places-CNN using the tags provided by AMT workers. Bounding boxes are

shown around the areas where each unit is activated within its RF above a certain threshold.
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Figure 4-12: (a) Object frequency in SUN (only top 50 objects shown), (b) Counts of
objects discovered by pool5 in Places-CNN. (c) Frequency of most informative objects for
scene classi�cation.

Figure 4-13: Interpretation of a picture by different layers of the Places-CNN using the
tags provided by AMT workers. The �rst shows the �nal layer output of Places-CNN. The
other three show detection results along with the con�dence based on the units' activation
and the semantic tags.
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Chapter 5

Quantifying the Interpretability of Deep

Visual Representations

Observations of hidden units in large deep neural networks have revealed that human-

interpretable concepts sometimes emerge as individual latent variables within those net-

works. For example, object detector units emerge within networks trained to recognize

places [119]; part detectors emerge in object classi�ers [32]; and object detectors emerge

in generative video networks [100]. This internal structure has appeared in situations where

the networks are not constrained to decompose problems in any interpretable way.

The emergence of interpretable structure present in previous chapter suggests that deep

networks may be learning disentangled representations spontaneously. While it is com-

monly understood that a network can learn an ef�cient encoding that makes economical

use of hidden variables to distinguish the input, the appearance of a disentangled repre-

sentation is not well understood. A disentangled representation aligns its variables with a

meaningful factorization of the underlying problem structure, and encouraging disentan-

gled representations is a signi�cant area of research [7]. If the internal representation of a

deep network is partly disentangled, one possible path for understanding its mechanisms is

to detect disentangled structure, and simply read out the human interpretable factors.

In this chapter we address the following three key issues about the deep visual repre-

sentations:

� What is a disentangled representation of neural networks, and how can its factors be
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quanti�ed and detected?

� Do interpretable hidden units re�ect a special alignment of feature space?

� What differences in network architectures, data sources, and training conditions lead

to the internal representations with greater or lesser entanglement?

To examine these issues, we propose a general analytic framework,Network Dissec-

tion, for interpreting deep visual representations and quantifying their interpretability. Us-

ing Broden, a broadly and densely labeled dataset, our framework identi�es hidden units'

semantics for any given CNN, then aligns them with human-interpretable concepts.

Building upon the preliminary result published at [5], we begin with a detailed descrip-

tion of the methodology of Network Dissection. We use the method to interpret a vari-

ety of deep visual representations trained with different network architectures (AlexNet,

VGG, GoogLeNet, ResNet, DenseNet) and supervisions (supervsied training on ImageNet

for object recognition and on Places for scene recognition, along with various self-taught

supervision tasks). We show that interpretability is an axis-aligned property of a represen-

tation that can be destroyed by rotation without affecting discriminative power. We further

examine how interpretability is affected by different training datasets. Our experiments

reveal that units emerge as semantic detectors in the intermediate layers of most deep vi-

sual representations, while the degree of interpretability can vary widely across changes

in architecture and training. We conclude that representations learned by deep networks

are more interpretable than previously thought, and that measurements of interpretability

provide insights about the structure of deep visual representations that that are not revealed

by their classi�cation power alone1.

5.1 Framework of Network Dissection

The notion of a disentangled representation rests on the human perception of what it means

for a concept to be mixed up. Therefore we de�ne theinterpretabilityof deep visual repre-

sentation in terms of the degree of alignment with a set of human-interpretable concepts.

1Code, data, and more dissection results are available at the project pagehttp://netdissect.
csail.mit.edu/ .
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Our quantitative measurement of interpretability for deep visual representations pro-

ceeds in three steps:

� Identify a broad set of human-labeled visual concepts.

� Gather the response of the hidden variables to known concepts.

� Quantify alignment of hidden variable� concept pairs.

This three-step process ofnetwork dissectionis reminiscent of the procedures used by

neuroscientists to understand similar representation questions in biological neurons [77].

Since our purpose is to measure the level to which a representation is disentangled, we focus

on quantifying the correspondence between a single latent variable and a visual concept.

In a fully interpretable local coding such as a one-hot-encoding, each variable will

match exactly with one human-interpretable concept. Although we expect a network to

learn partially nonlocal representations in interior layers [7], and past experience shows

that an emergent concept will often align with a combination of a several hidden units

[3,32], our present aim is to assess how well a representation is disentangled. Therefore we

measure the alignment between single units and single interpretable concepts. This does not

gauge the discriminative power of the representation; rather it quanti�es its disentangled

interpretability. As we will show in Sec. 5.2.2, it is possible for two representations of

perfectly equivalent discriminative power to have very different levels of interpretability.

To assess the interpretability of any given CNN, we draw concepts from a new broadly

and densely labeled image dataset that uni�es labeled visual concepts from a heteroge-

neous collection of labeled data sources, described in Sec. 5.1.1. We then measure the

alignment of each hidden unit of the CNN with each concept by evaluating the feature ac-

tivation of each individual unit as a segmentation model for each concept. To quantify the

interpretability of a layer as a whole, we count the number of distinct visual concepts that

are aligned with a unit in the layer, as detailed in Sec. 5.1.2.

5.1.1 Broden: Broadly and Densely Labeled Dataset

To be able to ascertain alignment with both low-level concepts such as colors and higher-

level concepts such as objects, we have assembled a new heterogeneous dataset.
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Figure 5-1: Samples from the Broden Dataset. The ground truth for each concept is a
pixel-wise dense annotation.

Table 5.1: Statistics of each label type included in the dataset.

Category Classes Sources Avg sample
scene 468 ADE [124] 38
object 584 ADE [124], Pascal-Context [65] 491
part 234 ADE [124], Pascal-Part [12] 854

material 32 OpenSurfaces [6] 1,703
texture 47 DTD [13] 140
color 11 Generated 59,250

The Broadly andDensely Labeled Dataset (Broden) uni�es several densely labeled

image datasets: ADE [124], OpenSurfaces [6], Pascal-Context [65], Pascal-Part [12], and

the Describable Textures Dataset [13]. These datasets contain examples of a broad range of

objects, scenes, object parts, textures, and materials in a variety of contexts. Most examples

are segmented down to the pixel level except textures and scenes, which are given for full

images. In addition, every image pixel in the dataset is annotated with one of the eleven

common color names according to the human perceptions classi�ed by van de Weijer [99].

Samples of the types of labels in the Broden dataset are shown in Fig. 5-1.

The purpose of Broden is to provide a ground truth set of exemplars for a broad set

of visual concepts. The concept labels in Broden are normalized and merged from their

original datasets so that every class corresponds to an English word. Labels are merged

based on shared synonyms, disregarding positional distinctions such as `left' and `top' and

avoiding a blacklist of 29 overly general synonyms (such as `machine' for `car'). Multiple

Broden labels can apply to the same pixel: for example, a black pixel that has the Pascal-

Part label `left front cat leg' has three labels in Broden: a uni�ed `cat' label representing

cats across datasets; a similar uni�ed `leg' label; and the color label `black'. Only labels

with at least 10 image samples are included. Table 5.1 shows the number of classes per

dataset and the average number of image samples per label class. Totally there are 1197
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Figure 5-2: Scoring unit interpretability by evaluating the unit for semantic segmentation.

visual concept classes included.

5.1.2 Scoring Unit Interpretability

The proposed network dissection method evaluates every individual convolutional unit in

a CNN as a solution to a binary segmentation task to every visual concept in Broden, as

illustrated in Fig. 5-3. Our method can be applied to any CNN using a forward pass without

the need for training or backpropagation.

For every input imagex in the Broden dataset, the activation mapAk(x) of every in-

ternal convolutional unitk is collected. Then the distribution of individual unit activa-

tions ak is computed. For each unitk, the top quantile levelTk is determined such that

P(ak > T k) = 0 :005over every spatial location of the activation map in the dataset.

To compare a low-resolution unit's activation map to the input-resolution annotation

maskL c for some conceptc, the activation map is scaled up to the mask resolutionSk(x)

from Ak(x) using bilinear interpolation, anchoring interpolants at the center of each unit's

receptive �eld.

Sk(x) is then thresholded into a binary segmentation:M k(x) � Sk(x) � Tk , selecting

all regions for which the activation exceeds the thresholdTk . These segmentations are

evaluated against every conceptc in the dataset by computing intersectionsM k(x) \ L c(x),
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for every(k; c) pair.

The score of each unitk as segmentation for conceptc is reported as a the intersection

over union score across all the images in the dataset,

IoUk;c =
P

jM k(x) \ L c(x)j
P

jM k(x) [ L c(x)j
; (5.1)

wherej � j is the cardinality of a set. Because the dataset contains some types of labels

which are not present on some subsets of inputs, the sums are computed only on the subset

of images that have at least one labeled concept of the same category asc. The value

of IoUk;c is the accuracy of unitk in detecting conceptc; we consider one unitk as a

detector for conceptc if IoUk;c exceeds a threshold. Our qualitative results are insensitive

to the IoU threshold: different thresholds denote different numbers of units as concept

detectors across all the networks but relative orderings remain stable. For our comparisons

we report a detector ifIoUk;c > 0:04. Note that one unit might be the detector for multiple

concepts; for the purpose of our analysis, we choose the top ranked label. To quantify the

interpretability of a layer, we count the number unique concepts aligned with units. We call

this the number ofunique detectors.

Figure 5-2 summarizes the whole process of scoring unit interpretability: By segment-

ing the annotation mask using the receptive �eld of units for the top activated images, we

compute the IoU for each concept. The IoU evaluating the quality of the segmentation of

a unit is an objective con�dence score for interpretability that iscomparable across net-

works. Thus this score enables us to compare interpretability of different representations

and lays the basis for the experiments below. Note that network dissection works only as

well as the underlying dataset: if a unit matches a human-understandable concept that is

absent in Broden, then it will not score well for interpretability. Future versions of Broden

will be expanded to include more kinds of visual concepts.
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Figure 5-3: Illustration of network dissection for measuring semantic alignment of units
in a given CNN. Here one unit of the last convolutional layer of a given CNN is probed
by evaluating its performance on various segmentation tasks. Our method can probe any
convolutional layer.

Table 5.2: Tested CNN Models

Training Network dataset or task
none AlexNet random

Supervised

AlexNet ImageNet, Places205, Places365, Hybrid.
GoogLeNet ImageNet, Places205, Places365.

VGG-16 ImageNet, Places205, Places365, Hybrid.
ResNet-152 ImageNet, Places365.

DenseNet-161 ImageNet, Places365.

Self AlexNet

context , puzzle , egomotion ,
tracking , moving , videoorder ,
audio , crosschannel ,colorization .
objectcentric , transinv .
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5.2 Interpreting Deep Visual Representations

For testing we prepare a collection of CNN models with different network architectures

and supervision of primary tasks, as listed in Table 5.2. The network architectures in-

clude AlexNet [48], GoogLeNet [94], VGG [90], ResNet [37], and DenseNet [41]. For

supervised training, the models are trained from scratch (i.e., not pretrained) on Ima-

geNet [79], Places205 [122], and Places365 [121]. ImageNet is an object-centric dataset,

which contains 1.2 million images from 1000 classes. Places205 and Places365 are two

subsets of the Places Database, which is a scene-centric dataset with categories such as

kitchen, living room, and coast. Places205 contains 2.4 million images from 205 scene

categories, while Places365 contains 1.6 million images from 365 scene categories. “Hy-

brid” refers to a combination of ImageNet and Places365. For self-supervised training

tasks, we select several recent models trained on predicting context (context ) [17],

solving puzzles (puzzle ) [68], predicting ego-motion (egomotion ) [43], learning by

moving (moving ) [2], predicting video frame order (videoorder ) [62] or tracking

(tracking ) [105], detecting object-centric alignment (objectcentric ) [29], coloriz-

ing images (colorization ) [116], inpainting (contextencoder ) [72], predicting

cross-channel (crosschannel ) [117], predicting ambient sound from frames (audio ) [71],

and tracking invariant patterns in videos (transinv ) [106]. The self-supervised models

we analyze are comparable to each other in that they all use AlexNet or an AlexNet-derived

architecture, with one exception modeltransinv [106], which uses VGG as the base net-

work.

In the following experiments, we begin by validating our method using human evalu-

ation. Then, we use random unitary rotations of a learned representation to test whether

interpretability of CNNs is an axis-independent property; we �nd that it is not, and we

conclude that interpretability is not an inevitable result of the discriminative power of a

representation. Next, we analyze all the convolutional layers of AlexNet as trained on

ImageNet [48] and as trained on Places [122], and con�rm that our method reveals de-

tectors for higher-level concepts at higher layers and lower-level concepts at lower layers;

and that more detectors for higher-level concepts emerge under scene training. Then, we

84



show that different network architectures such as AlexNet, VGG, and ResNet yield differ-

ent interpretability, while differently supervised training tasks and self-supervised training

tasks also yield a variety of levels of interpretability. Additionally we show the impact of

different training conditions, examine the relationship between discriminative power and

interpretability, and investigate a possible way to improve the interpretability of CNNs by

increasing their width. Finally we utilize the interpretable units as explanatory factors to

the prediction given by a CNN.

5.2.1 Human Evaluation of Interpretations

Using network dissection, we analyze the interpretability of units within all the convo-

lutional layers of Places-AlexNet and ImageNet-AlexNet, then compare with human in-

terpretation. Places-AlexNet is trained for scene classi�cation on Places205 [122], while

ImageNet-AlexNet is the identical architecture trained for object classi�cation on Ima-

geNet [48].

Our evaluation was done by raters on Amazon Mechanical Turk (AMT). As a baseline

description of unit semantics, we used human-written descriptions of each unit from [119].

These descriptions were collected by asking raters to write words or short phrases to de-

scribe the common meaning or pattern selected by each unit, based on a visualization of

the top image patches. Three descriptions and a con�dence were collected for each unit.

As a canonical description we chose the most common description of a unit (when raters

agreed), and the highest-con�dence description (when raters did not agree). Some units

may not be interpretable. To identify these, raters were shown the canonical descriptions of

visualizations and asked whether they were descriptive. Units with validated descriptions

are taken as the set of interpretable units.

To compare these baseline descriptions to network-dissection-derived labels, we ran

the following experiment. Raters were shown a visualization of top images patches for

an interpretable unit, along with a word or short phrase description, and they were asked

to vote (yes/no) whether the given phrase was descriptive of most of the image patches.

The baseline human-written descriptions were randomized with the labels derived using
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Figure 5-4: The annotation interface used by human raters on Amazon Mechanical Turk.
Raters are shown descriptive text in quotes together with �fteen images, each with high-
lighted patches, and must evaluate whether the quoted text is a good description for the
highlighted patches.

net dissection, and the origin of the labels was not revealed to the raters.

Table 5.3 summarizes the results. The number of interpretable units is shown for each

layer, and average positive votes for descriptions of interpretable units are shown, both

for human-written labels and network-dissection-derived labels. Human labels are most

highly consistent for units ofconv5 , suggesting that humans have no trouble identifying

high-level visual concept detectors, while lower-level detectors are more dif�cult to label.

Similarly, labels given by network dissection are best atconv5 , and are found to be less

descriptive for lower layers.

Comparison of the human interpretation and the labels predicted by network dissection

is plotted in Fig. 5-5. A sample of units is shown together with both automatically inferred

interpretations and manually assigned interpretations taken from [119]. We can see that
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Table 5.3: Human evaluation of our Network Dissection approach.

conv1 conv2 conv3 conv4 conv5
Interpretable units 57/96 126/256 247/384 258/384 194/256
Human consistency 82% 76% 83% 82% 91%
Network Dissection 37% 56% 54% 59% 71%

Figure 5-5: Comparison of the interpretability of all �ve convolutional layers of AlexNet,
as trained on classi�cation tasks for Places (top) and ImageNet (bottom).Four examples of
units in each layer are shown with identi�ed semantics. The segmentation generated by
each unit is shown on the three Broden images with highest activation. Top-scoring labels
are shown above to the left, and human-annotated labels are shown above to the right.
Some disagreement can be seen for the dominant judgment of meaning. For example,
human annotators mark the �rstconv4 unit on Places as a `windows' detector, while the
algorithm matches the `chequered' texture.
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the predicted labels match the human annotation well, though sometimes they capture a

different description of a visual concept, such as the `crosswalk' predicted by the algorithm

compared to `horizontal lines' given by the human for the third unit inconv4 of Places-

AlexNet in Fig. 5-5. Con�rming intuition, color and texture concepts dominate at lower

layersconv1 andconv2 while more object and part detectors emerge inconv5 .

5.2.2 Measurement of Axis-aligned Interpretability

We conduct an experiment to determine whether it is meaningful to assign an interpretable

concept to an individual unit. Two possible hypotheses can explain the emergence of inter-

pretability in individual hidden layer units:

Hypothesis 1. Interpretability is a property of the representation as a whole, and individ-

ual interpretable units emerge because interpretability is a generic property of typical

directions of representation space. Under this hypothesis, projecting toanydirection

would typically reveal an interpretable concept, and interpretations of single units in

the natural basis would not be more meaningful than interpretations that can be found

in any other direction.

Hypothesis 2. Interpretable alignments are unusual, and interpretable units emerge be-

cause learning converges to a special basis that aligns explanatory factors with indi-

vidual units. In this model, the natural basis represents a meaningful decomposition

learned by the network.

Hypothesis 1 is the default assumption: in the past it has been found [95] that with respect

to interpretability “there is no distinction between individual high level units and random

linear combinations of high level units.”

Network dissection allows us to re-evaluate this hypothesis. We apply random changes

in basis to a representation learned by AlexNet. Under hypothesis 1, the overall level of

interpretability should not be affected by a change in basis, even as rotations cause the

speci�c set of represented concepts to change. Under hypothesis 2, the overall level of

interpretability is expected to drop under a change in basis.
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Figure 5-6: Interpretability over changes in basis of the representation of AlexNetconv5
trained on Places. The vertical axis shows the number of unique interpretable concepts
that match a unit in the representation. The horizontal axis shows� , which quanti�es the
degree of rotation.

We begin with the representation of the 256 convolutional units of AlexNetconv5

trained on Places205 and examine the effect of a change in basis. To avoid any issues of

conditioning or degeneracy, we change basis using a random orthogonal transformation

Q. The rotationQ is drawn uniformly fromSO(256) by applying Gram-Schmidt on a

normally-distributedQR = A 2 R 2562
with positive-diagonal right-triangularR, as de-

scribed by [16]. Interpretability is summarized as the number of unique visual concepts

aligned with units, as de�ned in Sec. 5.1.2.

Denoting AlexNetconv5 as f (x), we �nd that the number of unique detectors in

Qf (x) is 80% fewer than the number of unique detectors inf (x). Our �nding is inconsis-

tent with hypothesis 1 and consistent with hypothesis 2.

We also test smaller perturbations of basis usingQ� for 0 � � � 1, where the fractional

powersQ� 2 SO(256)are chosen to form a minimal geodesic gradually rotating fromI to

Q; these intermediate rotations are computed using a Schur decomposition. Fig. 5-6 shows

that interpretability ofQ� f (x) decreases as larger rotations are applied. Fig. 5-7 shows

some examples of the linearly combined units.
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Figure 5-7: Visualizations of the best single-unit concept detectors of �ve concepts taken
from individual units of AlexNetconv5 trained on Places (left), compared with the best
linear-combination detectors of the same concepts taken from the same representation un-
der a random rotation (right). For most concepts, both the IoU and the visualization of the
top activating image patches con�rm that individual units match concepts better than linear
combinations. In other cases, (e.g. head detectors) visualization of a linear combination
appears highly consistent, but the IoU reveals lower consistency when evaluated over the
whole dataset.

Each rotated representation has exactly the same discriminative power as the original

layer. Writing the original network asg(f (x)), note thatg0(r ) � g(QT r ) de�nes a neu-

ral network that processes the rotated representationr = Qf (x) exactly as the originalg

operates onf (x). We conclude that interpretability is neither an inevitable result of dis-

criminative power, nor is it a prerequisite to discriminative power. Instead, we �nd that

interpretability is a different quality that must be measured separately to be understood.

We repeat the complete rotation (� = 1) on Places365 and ImageNet 10 times, the result

is shown in Fig. 5-8. We observe the drop of interpretability for both of the network, while

it drops more for the AlexNet on Places365. It is because originally the interpretability

of AlexNet on Places365 is higher than AlexNet on ImageNet thus the random rotation

damages more.
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Figure 5-8: Complete rotation (� = 1) repeated on AlexNet trained on Places365 and
ImageNet respectively. Rotation reduces the interpretability signi�cantly for both of the
networks.

5.2.3 Network Architectures with Supervised Learning

How do different network architectures affect disentangled interpretability of the learned

representations? We apply network dissection to evaluate a range of network architectures

trained on ImageNet and Places. For simplicity, the following experiments focus on the

last convolutional layer of each CNN, where semantic detectors emerge most.

Results showing the number of unique detectors that emerge from various network

architectures trained on ImageNet and Places are plotted in Fig. 5-9. In terms of network

architecture, we �nd that interpretability of ResNet> DenseNet> VGG > GoogLeNet

> AlexNet. Deeper architectures usually appear to allow greater interpretability, though

individual layer structure is different across architecture. Comparing training datasets, we

�nd Places> ImageNet. As discussed in [119], one scene is composed of multiple objects,

so it may be bene�cial for more object detectors to emerge in CNNs trained to recognize

scenes.

Fig. 5-10 shows the histogram of object detectors identi�ed inside ResNet and DenseNet

trained on ImageNet and Places respectively. DenseNet161-Places365 has the largest num-

ber of unique object detectors among all the networks. The emergent detectors differ across

both training data source and architecture. The most frequent object detectors in the two

networks trained on ImageNet are dog detectors, because there are more than 100 dog

categories out of the 1000 classes in the ImageNet training set.
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Figure 5-9: Interpretability across different architectures trained on ImageNet and Places.
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Figure 5-10: Histogram of the object detectors from the ResNet and DenseNet trained on
ImageNet and Places respectively.
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Figure 5-11: Comparison of several visual concept detectors identi�ed by network dissec-
tion in DenseNet, ResNet, GoogLeNet, VGG, and AlexNet. Each network is trained on
Places365. The two highest-IoU matches among convolutional units of each network is
shown. The segmentation generated by each unit is shown on the four maximally activat-
ing Broden images. Some units activate on concept generalizations, e.g., GoogLeNet 4e's
unit 225 on horses and dogs, and 759 on white ellipsoids and jets.
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Figure 5-12: Comparison of interpretability of the layers for AlexNet, VGG16,
GoogLeNet, and ResNet152 trained on Places365. All �ve conv layers of AlexNet and
the selected layers of VGG, GoogLeNet, and ResNet are included.

Fig. 5-11 shows the examples of object detectors grouped by object categories. For the

same object category, the visual appearance of the unit as detector varies not only within

the same network but also across different networks. DenseNet and ResNet has such good

detectors for bus and airplane with IoU> 0:25.

Fig. 5-12 shows the unique interpretable detectors over different layers for different

network architectures trained on Places365. We observe that more object and scene detec-

tors emerge at the higher layers across all architectures: AlexNet, VGG, GoogLeNet, and

ResNet. This suggests that representation ability increases over layer depth. Because of

the compositional structure of the CNN layers, the deeper layers should have higher ca-

pacity to represent concepts with larger visual complexity such as objects and scene parts.

Our measurements con�rm this, and we conclude that higher network depth encourages the

emergence of visual concepts with higher semantic complexity.

5.2.4 Representations from Self-supervised Learning

Recently many work have explored a novel paradigm for unsupervised learning of CNNs

without using millions of annotated images, namely self-supervised learning. For exam-

ple, [17] trains deep CNNs to predict the neighborhoods of two image patches, while [116]

trains networks by colorizing images. Totally we investigate 12 networks trained for dif-

ferent self-supervised learning tasks. How do different supervisions affect those internal

representations?

Here we compare the interpretability of the deep visual representations resulting from

self-supervised learning and supervised learning. We keep the network architecture the
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Figure 5-13: Semantic detectors emerge across different supervision of the primary training
task. All these models use the AlexNet architecture and are tested atconv5 .
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Figure 5-14: The top ranked concepts in the three top categories in four self-supervised
networks. Some object and part detectors emerge inaudio . Detectors for person heads
also appear inpuzzle and colorization . A variety of texture concepts dominate
models with self-supervised training.
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same as AlexNet for each model (one exception is the recent modeltransinv which

uses VGG as the base network). Results are shown in Fig. 5-13. We observe that training

on Places365 creates the largest number of unique detectors. Self-supervised models create

many texture detectors but relatively few object detectors; apparently, supervision from a

self-taught primary task is much weaker at inferring interpretable concepts than supervised

training on a large annotated dataset. The form of self-supervision makes a difference:

for example, the colorization model is trained on colorless images, and almost no color

detection units emerge. We hypothesize that emergent units represent concepts required to

solve the primary task.

Fig. 5-14 shows some typical visual detectors identi�ed in the self-supervised CNN

models. For the modelsaudio and puzzle , some object and part detectors emerge.

Those detectors may be useful for CNNs to solve the primary tasks: theaudio model is

trained to associate objects with a sound source, so it may be useful to recognize people and

cars; while thepuzzle model is trained to align the different parts of objects and scenes

in an image. Forcolorization andtracking , recognizing textures might be good

enough for the CNN to solve primary tasks such as colorizing a desaturated natural image;

thus it is unsurprising that the texture detectors dominate.

!"##$%&'()*$(+',)#-$./., !"##$%&'()*$(+'*#012/.,

)3

*3

Figure 5-15: Segmenting images using top activated units weighted by the class label from
ResNet152-Places365 deep feature. a) the correctly predicted samples. b) the incorrectly
predicted samples.
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5.2.5 Explaining the Predictions for the Deep Features

After we interpret the units inside the deep visual representation, we show that the unit

activation along with the interpreted label can be used to explain the prediction given by

the deep features. Previous work [120] uses the weighted sum of the unit activation maps

to highlight which image regions are most informative to the prediction, here we further

decouple at individual unit level to segment the informative image regions.

We �rst plot the Class-speci�c units. After the linear SVM is trained, we can rank

the elements of the feature according to their SVM weights to obtain the elements of the

deep features which contribute most to that class. Those elements are units that act as

explanatory factors, and we call those top ranked units associated with each output class

class-speci�c units. Fig. 5-16 shows the class-speci�c units of ResNet152-ImageNet and

ResNet152-Places365 for one class from action40 and sun397 respectively. For exam-

ple, for theWalking the dogclass from action40, the top three class-speci�c units from

ResNet152-ImageNet are two dog detection unit and one person detection unit; for thePic-

nic areaclass from sun397, the top three class-speci�c units from ResNet152-Places365

are plant detection unit, grass detection unit, and fence detection unit. The intuitive match

between visual detectors and the classes they explain suggests that visual detectors from

CNNs behave as the bag-of-semantic-words visual features.

We further use the individual units identi�ed as concept detectors to build an expla-

nation of the individual image prediction given by a classi�er. The procedure is as fol-

lows: Given any image, let the unit activation of the deep feature (for ResNet theGAP

activation) be[x1; x2; :::; xN ], where eachxn represents the value summed up from the ac-

tivation map of unitn. Let the top prediction's SVM response bes =
P

n wnxn , where

[w1; w2; :::; wN ] is the SVM's learned weight. We get the top ranked units in Figure 5-15

by ranking[w1x1; w2x2; :::; wN xN ], which are the unit activations weighted by the SVM

weight for the top predicted class. Then we simply upsample the activation map of the top

ranked unit to segment the image.

Image segmentations using individual unit activation are plotted in Fig. 5-15a. The

unit segmentation explain the prediction explicitly. For example, the prediction for the �rst

97



!" #$%&'()* " '+ #,- ./ $'01%'2* $'3#40.* / 567

8%&9%0: ; <=!" #$%9%0 8%&9%0: ; <=>,#4%&?@; 8%&9%0: ; <=!" #$%9%0 8%&9%0: ; <=>,#4%&?@;

!" #$%&'()* " '>.4/ .4'#)%#'3&A/ ?BC7

Figure 5-16: Class-speci�c units from ResNet152-ImageNet and ResNet152-Places365
on one class from action40 and sun397. For each class, we show three sample images,
followed by the top 3 units from ResNet152-ImageNet and ResNet152-Places365 ranked
by the class weight of linear SVM to predict that class. SVM weight, detected concept
name and the IoU score are shown above each unit.

image isGardening, and the explanatory units detect plant, grass, person, �ower, and pot.

The prediction for the second image isRiding a horse, the explanatory units detect horse,

fence and dog. We also plot some incorrectly predicted samples in Figure 5-15b. The

segmentation gives the intuition as to why the classi�er made mistakes. For example, for

the �rst image the classi�er predictscutting vegetablesrather than the true labelgardening,

because the second unit incorrectly considers the ground as table.
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Chapter 6

Explaining the Deep Neural Networks

via Class Activation Mapping

In previous chapters, we have shown that the convolutional units of various layers of convo-

lutional neural networks (CNNs) actually behave as object detectors despite no supervision

on the location of the object was provided. Despite having this remarkable ability to lo-

calize objects in the convolutional layers, this ability is lost when fully-connected layers

are used for classi�cation. On the other hand, when the CNN produces a prediction for an

image, it lacks the explanation about why the model makes such a decision.

Some popular fully-convolutional neural networks such as the Network in Network

(NIN) [55] and GoogLeNet [93] have been proposed to avoid the use of fully-connected

layers to minimize the number of parameters while maintaining high performance. [55]

usesglobal average poolingwhich acts as a structural regularizer, preventing over�tting

during training. In our experiments, we found that the advantages of this global average

pooling layer extend beyond simply acting as a regularizer - In fact, with a little tweaking,

the network can retain its remarkable localization ability until the �nal layer. This tweaking

allows identifying easily the informative image regions in a single forward-pass for a wide

variety of tasks, even those that the network was not originally trained for. As shown in

Figure 6-1a, a CNN trained on object categorization is successfully able to localize the most

informative regions for classifying the action as the objects that the humans are interacting

with rather than the humans themselves.
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Figure 6-1: A simple modi�cation of the global average pooling layer combined with our
class activation mapping (CAM) technique allows the classi�cation-trained CNN to both
classify the image and localize class-speci�c image regions in a single forward-pass e.g.,
the toothbrush forbrushing teethand the chainsaw forcutting trees. It produces a visual
explanation for the decision made by the CNN.

Despite the apparent simplicity of our approach, for the weakly supervised object

localization on ILSVRC benchmark [79], our best network achieves 37.1% top-5 test

error, which is rather close to the 34.2% top-5 test error achieved by fully supervised

AlexNet [48]. Furthermore, we demonstrate that the localizability of the deep features

in our approach can be easily transferred to other recognition datasets for generic classi�-

cation, localization, and concept discovery.1.

6.1 Class Activation Mapping

In this section, we describe the procedure for generatingclass activation maps(CAM) us-

ing global average pooling (GAP) in CNNs. A class activation map for a particular category

indicates the discriminative image regions used by the CNN to identify that category. The

procedure for generating these maps is illustrated in Fig. 6-2.

We use a network architecture similar to Network in Network [55] and GoogLeNet [93]

1The demo code is available at: http://cnnlocalization.csail.mit.edu
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Figure 6-2: Class Activation Mapping: the predicted class score is mapped back to the
previous convolutional layer to generate the class activation maps (CAMs). The CAM
highlights the class-speci�c discriminative regions.

- the network largely consists of convolutional layers, and just before the �nal output layer

(softmax in the case of categorization), we perform global average pooling on the convolu-

tional feature maps and use those as features for a fully-connected layer that produces the

desired output (categorical or otherwise). Given this simple connectivity structure, we can

identify the importance of the image regions by projecting back the weights of the output

layer on to the convolutional feature maps, a technique we call class activation mapping.

As illustrated in Fig. 6-2, global average pooling outputs the spatial average of the

feature map of each unit at the last convolutional layer. A weighted sum of these values is

used to generate the �nal output. Similarly, we compute a weighted sum of the feature maps

of the last convolutional layer to obtain our class activation maps. We describe this more

formally below for the case of softmax. The same technique can be applied to regression

and other losses.

For a given image, letf k(x; y) represent the activation of unitk in the last convolu-

tional layer at spatial location(x; y). Then, for unitk, the result of performing global

average pooling,F k is
P

x;y f k(x; y). Thus, for a given classc, the input to the softmax,

Sc, is
P

k wc
kFk wherewc

k is the weight corresponding to classc for unit k. Essentially,wc
k

indicates theimportanceof Fk for classc. Finally the output of the softmax for classc, Pc

is given by exp(Sc )P
c exp(Sc ) . Here we ignore the bias term: we explicitly set the input bias of the

softmax to0 as it has little to no impact on the classi�cation performance.
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By pluggingFk =
P

x;y f k(x; y) into the class score,Sc, we obtain

Sc =
X

k

wc
k

X

x;y

f k(x; y)

=
X

x;y

X

k

wc
k f k(x; y): (6.1)

We de�ne M c as the class activation map for classc, where each spatial element is given

by

M c(x; y) =
X

k

wc
k f k(x; y): (6.2)

Thus,Sc =
P

x;y M c(x; y), and henceM c(x; y) directly indicates the importance of the

activation at spatial grid(x; y) leading to the classi�cation of an image to classc.

Intuitively, based on prior works [112,119], we expect each unit to be activated by some

visual pattern within its receptive �eld. Thusf k is the map of the presence of this visual

pattern. The class activation map is simply a weighted linear sum of the presence of these

visual patterns at different spatial locations. By simply upsampling the class activation

map to the size of the input image, we can identify the image regions most relevant to the

particular category.

In Fig. 6-3a, we show some examples of the CAMs output using the above approach.

We can see that the discriminative regions of the images for various classes are highlighted.

In Fig. 6-3b we highlight the differences in the CAMs for a single image when using differ-

ent classesc to generate the maps. We observe that the discriminative regions for different

categories are different even for a given image. This suggests that our approach works as

expected. We demonstrate this quantitatively in the sections ahead.

Global average pooling (GAP) vs global max pooling (GMP):Given the prior work [70]

on using GMP for weakly supervised object localization, we believe it is important to high-

light the intuitive difference between GAP and GMP. We believe that GAP loss encourages

the network to identify the extent of the object as compared to GMP which encourages

it to identify just one discriminative part. This is because, when doing the average of a

map, the value can be maximized by �ndingall discriminative parts of an object as all
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(a) (b)

Figure 6-3: (a) The CAMs of four classes from ImageNet. The maps highlight the discrim-
inative image regions used for image classi�cation e.g., the head of the animal forbriard
andhen, the plates inbarbell, and the bell inbell cote. (b) Examples of the CAMs gen-
erated from the top 5 predicted categories for the given image with ground-truth as dome.
The predicted class and its score are shown above each class activation map. We observe
that the highlighted regions vary across predicted classes e.g.,domeactivates the upper
round part whilepalaceactivates the lower �at part of the compound.

low activations reduce the output of the particular map. On the other hand, for GMP, low

scores for all image regions except the most discriminative one do not impact the score as

you just perform a max. We verify this experimentally on ILSVRC dataset in Sec. 6.2:

while GMP achieves similar classi�cation performance as GAP, GAP outperforms GMP

for localization.

6.2 Weakly-supervised Object Localization

In this section, we evaluate the localization ability of CAM when trained on the ILSVRC

2014 benchmark dataset [79]. We �rst describe the experimental setup and the various

CNNs used in Sec. 6.2.1. Then, in Sec. 6.2.2 we verify that our technique does not ad-

versely impact the classi�cation performance when learning to localize and provide de-

tailed results on weakly-supervised object localization.

6.2.1 Setup

For our experiments we evaluate the effect of using CAM on the following popular CNNs:

AlexNet [48], VGGnet [90], and GoogLeNet [93]. In general, for each of these networks
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we remove the fully-connected layers before the �nal output and replace them with GAP

followed by a fully-connected softmax layer.

We found that the localization ability of the networks improved when the last con-

volutional layer before GAP had a higher spatial resolution, which we term themapping

resolution. In order to do this, we removed several convolutional layers from some of the

networks. Speci�cally, we made the following modi�cations: For AlexNet, we removed the

layers afterconv5 (i.e.,pool5 to prob ) resulting in a mapping resolution of13� 13. For

VGGnet, we removed the layers afterconv5-3 (i.e.,pool5 to prob ), resulting in a map-

ping resolution of14� 14. For GoogLeNet, we removed the layers afterinception4e

(i.e.,pool4 to prob ), resulting in a mapping resolution of14� 14. To each of the above

networks, we added a convolutional layer of size3� 3, stride1, pad1 with 1024 units, fol-

lowed by a GAP layer and a softmax layer. Each of these networks were then �ne-tuned2

on the 1.3M training images of ILSVRC [79] for 1000-way object classi�cation resulting

in our �nal networks AlexNet-GAP, VGGnet-GAP and GoogLeNet-GAP respectively.

For classi�cation, we compare our approach against the original AlexNet [48], VG-

Gnet [90], and GoogLeNet [93], and also provide results for Network in Network (NIN) [55].

For localization, we compare against the original GoogLeNet3, NIN and using backpropa-

gation [88] instead of CAMs. Further, to compare average pooling against max pooling, we

also provide results for GoogLeNet trained using global max pooling (GoogLeNet-GMP).

We use the same error metrics (top-1, top-5) as ILSVRC for both classi�cation and

localization to evaluate our networks. For classi�cation, we evaluate on the ILSVRC vali-

dation set, and for localization we evaluate on both the validation and test sets.

6.2.2 Results

We �rst report results on object classi�cation to demonstrate that our approach does not

signi�cantly hurt classi�cation performance. Then we demonstrate that our approach is

effective at weakly-supervised object localization.

Classi�cation: Tbl. 6.1 summarizes the classi�cation performance of both the origi-

2Training from scratch also resulted in similar performances.
3This has a lower mapping resolution than GoogLeNet-GAP.
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nal and our GAP networks. We �nd that in most cases there is a small performance drop

of 1 � 2% when removing the additional layers from the various networks. We observe

that AlexNet is the most affected by the removal of the fully-connected layers. To com-

pensate, we add two convolutional layers just before GAP resulting in the AlexNet*-GAP

network. We �nd that AlexNet*-GAP performs comparably to AlexNet. Thus, overall we

�nd that the classi�cation performance is largely preserved for our GAP networks. Fur-

ther, we observe that GoogLeNet-GAP and GoogLeNet-GMP have similar performance on

classi�cation, as expected. Note that it is important for the networks to perform well on

classi�cation in order to achieve a high performance on localization as it involves identify-

ing both the object category and the bounding box location accurately.

Localization: In order to perform localization, we need to generate a bounding box

and its associated object category. To generate a bounding box from the CAMs, we use

a simple thresholding technique to segment the heatmap. We �rst segment the regions of

which the value is above 20% of the max value of the CAM. Then we take the bounding

box that covers the largest connected component in the segmentation map. We do this for

each of the top-5 predicted classes for the top-5 localization evaluation metric. Fig. 6-

5(a) shows some example bounding boxes generated using this technique. The localization

performance on the ILSVRC validation set is shown in Tbl. 6.2, and example outputs in

Fig. 6-4.

We observe that our GAP networks outperform all the baseline approaches with GoogLeNet-

GAP achieving the lowest localization error of43%on top-5. This is remarkable given

that this network was not trained on a single annotated bounding box. We observe that

our CAM approach signi�cantly outperforms the backpropagation approach of [88] (see

Fig. 6-5(b) for a comparison of the outputs). Further, we observe that GoogLeNet-GAP

signi�cantly outperforms GoogLeNet on localization, despite this being reversed for clas-

si�cation. We believe that the low mapping resolution of GoogLeNet (7 � 7) prevents it

from obtaining accurate localizations. Last, we observe that GoogLeNet-GAP outperforms

GoogLeNet-GMP by a reasonable margin illustrating the importance of average pooling

over max pooling for identifying the extent of objects.

To further compare our approach with the existing weakly-supervised [88] and fully-
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Table 6.1: Classi�cation error on the ILSVRC validation set.

Networks top-1 val. error top-5 val. error
VGGnet-GAP 33.4 12.2
GoogLeNet-GAP 35.0 13.2
AlexNet� -GAP 44.9 20.9
AlexNet-GAP 51.1 26.3
GoogLeNet 31.9 11.3
VGGnet 31.2 11.4
AlexNet 42.6 19.5
NIN 41.9 19.6
GoogLeNet-GMP 35.6 13.9

Figure 6-4: Class activation maps from CNN-GAPs and the class-speci�c saliency map
from the backpropagation methods.

supervised [82, 93, 93] CNN methods, we evaluate the performance of GoogLeNet-GAP

on the ILSVRC test set. We follow a slightly different bounding box selection strategy

here: we select two bounding boxes (one tight and one loose) from the class activation

map of the top 1st and 2nd predicted classes and one loose bounding boxes from the top

3rd predicted class. We found that this heuristic was helpful to improve performances on

the validation set. The performances are summarized in Tbl. 6.3. GoogLeNet-GAP with

heuristics achieves a top-5 error rate of 37.1% in a weakly-supervised setting, which is

surprisingly close to the top-5 error rate of AlexNet (34.2%) in a fully-supervised setting.

While impressive, we still have a long way to go when comparing the fully-supervised

networks with the same architecture (i.e., weakly-supervised GoogLeNet-GAP vs fully-

supervised GoogLeNet) for the localization.
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Table 6.2: Localization error on the ILSVRC validation set.Backproprefers to using [88]
for localization instead of CAM.

Method top-1 val.error top-5 val. error
GoogLeNet-GAP 56.40 43.00
VGGnet-GAP 57.20 45.14
GoogLeNet 60.09 49.34
AlexNet� -GAP 63.75 49.53
AlexNet-GAP 67.19 52.16
NIN 65.47 54.19
Backprop on GoogLeNet 61.31 50.55
Backprop on VGGnet 61.12 51.46
Backprop on AlexNet 65.17 52.64
GoogLeNet-GMP 57.78 45.26

Table 6.3: Localization error on the ILSVRC test set for various weakly- and fully- super-
vised methods.

Method supervision top-5 test error
GoogLeNet-GAP (heuristics) weakly 37.1
GoogLeNet-GAP weakly 42.9
Backprop [88] weakly 46.4
GoogLeNet [93] full 26.7
OverFeat [82] full 29.9
AlexNet [93] full 34.2

Figure 6-5: a) Examples of localization from GoogleNet-GAP. b) Comparison of the lo-
calization from GooleNet-GAP (upper two) and the backpropagation using AlexNet (lower
two). The ground-truth boxes are in green and the predicted bounding boxes from the class
activation map are in red.
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6.3 Deep Features for Generic Localization

The responses from the higher-level layers of CNN (e.g.,fc6 , fc7 from AlexNet) have

been shown to be very effective generic features with state-of-the-art performance on a

variety of image datasets [18, 78, 122]. Here, we show that the features learned by our

GAP CNNs also perform well as generic features, and as bonus, identify the discriminative

image regions used for categorization, despite not having being trained for those particular

tasks. To obtain the weights similar to the original softmax layer, we simply train a linear

SVM [25] on the output of the GAP layer.

First, we compare the performance of our approach and some baselines on the fol-

lowing scene and object classi�cation benchmarks: SUN397 [108], MIT Indoor67 [76],

Scene15 [50], SUN Attribute [73], Caltech101 [26], Caltech256 [35], Stanford Action40 [109],

and UIUC Event8 [53]. The experimental setup is the same as in [122]. In Tbl. 6.5, we

compare the performance of features from our best network, GoogLeNet-GAP, with the

fc7 features from AlexNet, andave pool from GoogLeNet.

As expected, GoogLeNet-GAP and GoogLeNet signi�cantly outperform AlexNet. Also,

we observe that GoogLeNet-GAP and GoogLeNet perform similarly despite the former

having fewer convolutional layers. Overall, we �nd that GoogLeNet-GAP features are

competitive with the state-of-the-art as generic visual features.

More importantly, we want to explore whether the localization maps generated using

our CAM technique with GoogLeNet-GAP are informative even in this scenario. Fig. 6-7

shows some example maps for various datasets. We observe that the most discriminative

regions tend to be highlighted across all datasets. Overall, our approach is effective for

generating localizable deep features for generic tasks.

In Sec. 6.3.1, we explore �ne-grained recognition of birds and demonstrate how we

evaluate the generic localization ability and use it to further improve performance. In

Sec. 6.3.2 we demonstrate how GoogLeNet-GAP can be used to identify generic visual

patterns from images.
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Table 6.4: Fine-grained classi�cation performance on CUB200 dataset. GoogLeNet-GAP
can successfully localize important image crops, boosting classi�cation performance.

Methods Train/Test Anno. Accuracy
GoogLeNet-GAP on full image n/a 63.0%
GoogLeNet-GAP on crop n/a 67.8%
GoogLeNet-GAP on BBox BBox 70.5%
Alignments [30] n/a 53.6%
Alignments [30] BBox 67.0%
DPD [115] BBox+Parts 51.0%
DeCAF+DPD [18] BBox+Parts 65.0%
PANDA R-CNN [114] BBox+Parts 76.4%

6.3.1 Fine-grained Recognition

In this section, we apply our generic localizable deep features to identifying 200 bird

species in the CUB-200-2011 [107] dataset. The dataset contains 11,788 images, with

5,994 images for training and 5,794 for test. We choose this dataset as it also contains

bounding box annotations allowing us to evaluate our localization ability. Tbl. 6.4 summa-

rizes the results.

We �nd that GoogLeNet-GAP performs comparably to existing approaches, achieving

an accuracy of 63.0% when using the full image without any bounding box annotations

for both train and test. When using bounding box annotations, this accuracy increases to

70.5%. Now, given the localization ability of our network, we can use a similar approach

as Sec. 6.2.2 (i.e., thresholding) to �rst identify bird bounding boxes in both the train and

test sets. We then use GoogLeNet-GAP to extract features again from the crops inside

the bounding box, for training and testing. We �nd that this improves the performance

considerably to 67.8%. This localization ability is particularly important for �ne-grained

recognition as the distinctions between the categories are subtle and having a more focused

image crop allows for better discrimination.

Further, we �nd that GoogLeNet-GAP is able to accurately localize the bird in 41.0%

of the images under the 0.5 intersection over union (IoU) criterion, as compared to a chance

performance of 5.5%. We visualize some examples in Fig. 6-6. This further validates the

localization ability of our approach.
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Figure 6-6: CAMs and the inferred bounding boxes (in red) for selected images from four
bird categories in CUB200. In Sec. 6.3.1 we quantitatively evaluate the quality of the
bounding boxes (41.0% accuracy for 0.5 IoU). We �nd that extracting GoogLeNet-GAP
features in these CAM bounding boxes and re-training the SVM improves bird classi�ca-
tion accuracy by about 5% (Tbl. 6.4).

Table 6.5: Classi�cation accuracy on representative scene and object datasets for different
deep features.

SUN397 MIT Indoor67 Scene15 SUN Attribute Caltech101
fc7 from AlexNet 42.61 56.79 84.23 84.23 87.22
ave pool from GoogLeNet 51.68 66.63 88.02 92.85 92.05
gap from GoogLeNet-GAP 51.31 66.61 88.30 92.21 91.98
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Figure 6-7: Generic discriminative localization using our GoogLeNet-GAP deep features
(which have been trained to recognize objects). We show 2 images each from 3 classes for
4 datasets, and their class activation maps below them. We observe that the discriminative
regions of the images are often highlighted e.g., in Stanford Action40, the mop is localized
for cleaning the �oor, while for cookingthe pan and bowl are localized and similar obser-
vations can be made in other datasets. This demonstrates the generic localization ability of
our deep features.

6.3.2 Pattern Discovery

In this section, we explore whether our technique can identify common elements or patterns

in images beyond objects, such as text or high-level concepts. Given a set of images con-

taining a common concept, we want to identify which regions our network recognizes as

being important and if this corresponds to the input pattern. We follow a similar approach

as before: we train a linear SVM on the GAP layer of the GoogLeNet-GAP network and

apply the CAM technique to identify important regions. We conducted three pattern dis-

covery experiments using our deep features. The results are summarized below. Note that

in this case, we do not have train and test splits� we just use our CNN for visual pattern

discovery.

Discovering informative objects in the scenes:We take 10 scene categories from

the SUN dataset [108] containing at least200fully annotated images, resulting in a total of

4675 fully annotated images. We train a one-vs-all linear SVM for each scene category and

compute the CAMs using the weights of the linear SVM. In Fig. 6-8 we plot the CAM for

the predicted scene category and list the top 6 objects that most frequently overlap with the

high CAM activation regions for two scene categories. We observe that the high activation
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Figure 6-8: Informative objects for two scene categories. For the dining room and bathroom
categories, we show examples of original images (top), and list of the6 most frequent
objects in that scene category with the corresponding frequency of appearance. At the
bottom: the CAMs and a list of the 6 objects that most frequently overlap with the high
activation regions.

������������	
�
��
������
����
�����	��
�����
���

���������������
����
�����	��
����������

��������������
���
�����	��
���������
������

��������������	
���
�����	��
���
�����������

Figure 6-9: Examples of highlighted image regions for the predicted answer class in the
visual question answering.

regions frequently correspond to objects indicative of the particular scene category.

Interpreting visual question answering: We use our approach and localizable deep

feature in the baseline proposed in [123] for visual question answering. It has overall

accuracy 55.89% on the test-standard in the Open-Ended track. As shown in Fig. 6-9, our

approach highlights the image regions relevant to the predicted answers.
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Chapter 7

Ef�cient Deep Visual Representations

for Activity Recognition

Going beyond image recognition, activity recognition in videos has been one of the core

topics in computer vision. However, it remains dif�cult due to the ambiguity of describ-

ing activities at appropriate timescales [85]. Many video datasets, such as UCF101 [92],

Sport1M [45], and THUMOS [33], include many activities that can be recognized without

reasoning about the long-term temporal relations: still frames and optical �ow are suf�cient

to identify many of the labeled activities. Indeed, the classical two-stream Convolutional

Neural Network [89] and the recent I3D Network [9], both based on frames and optical

�ow, perform activity recognition very well on these datasets.

However, convolutional neural networks still struggle in situations where data and ob-

servations are limited, or where the underlying structure is characterized by transformations

and temporal relations, rather than the appearance of certain entities [49,81]. It remains re-

markably challenging for convolutional neural networks to reason about temporal relations

and to anticipate what transformations are happening to the observations. Fig.7-1 shows

such examples. The networks are required to discover visual common sense knowledge

over time beyond the appearance of objects in the frames and the optical �ow.

The ability to reason about the relations between entities over time is crucial for intelli-

gent decision-making. Temporal relational reasoning allows intelligent species to analyze

the current situation relative to the past and formulate hypotheses on what may happen next.
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Figure 7-1: What takes place between two observations? (see answer below the �rst page).
Humans can easily infer the temporal relations and transformations between these obser-
vations, but this task remains dif�cult for neural networks.

For example (Fig.7-1), given two observations of an event, people can easily recognize the

temporal relation between two states of the visual world and deduce what has happened

between the two frames of a video1.

In this chapter, we propose a simple and interpretable network module called Temporal

Relation Network (TRN) [118] that enables temporal relational reasoning in neural net-

works. This module is inspired by the relational network proposed in [81], but instead

of modeling the spatial relations, TRN aims to describe the temporal relations between

observations in videos. Thus, TRN can learn and discover possible temporal relations at

multiple time scales. TRN is a general and extensible module that can be used in a plug-

and-play fashion with any existing CNN architecture. We apply TRN-equipped networks

on three recent video datasets (Something-Something [34], Jester [1], and Charades [86]),

which are constructed for recognizing different types of activities such as human-object

interactions and hand gestures, but all depend on temporal relational reasoning. The TRN-

equipped networks achieve very competitive results even given only discrete RGB frames,

bringing signi�cant improvements over baselines. Thus TRN provides a practical solution

for standard neural networks to solve activity recognition tasks using temporal relational

reasoning.

1Answer: a) Poking a stack of cans so it collapses; b) Stack something; c) Tidying up a closet; d) Thumb
up.
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Figure 7-2: The illustration of Temporal Relation Networks. Representative frames of a
video (shown above) are sampled and fed into different frame relation modules. Only a
subset of the 2-frame, 3-frame, and 4-frame relations are shown, as there are higher frame
relations included.

7.1 Temporal Relation Networks

In this section, we introduce the framework of Temporal Relation Networks. It is simple

and can be easily plugged into any existing convolutional neural network architecture to

enable temporal relational reasoning. In later experiments, we show that TRN-equipped

networks discover interpretable visual common sense knowledge to recognize activities in

videos.

7.1.1 De�ning Temporal Relations

Inspired by the relational reasoning module for visual question answering [81], we de�ne

the pairwise temporal relation as a composite function below:

T2(V) = h�

� X

i<j

g� (f i ; f j )
�

(7.1)

where the input is the videoV with n selected ordered frames asV = f f 1; f 2; :::; f ng, where

f i is a representation of thei th frame of the video, e.g., the output activation from some

standard CNN. The functionsh� andg� fuse features of different ordered frames. Here

we simply use multilayer perceptrons (MLP) with parameters� and � respectively. For
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ef�cient computation, rather than adding all the combination pairs, we uniformly sample

framesi andj and sort each pair.

We further extend the composite function of the 2-frame temporal relations to higher

frame relations such as the 3-frame relation function below:

T3(V) = h
0

�

� X

i<j<k

g
0

� (f i ; f j ; f k)
�

(7.2)

where the sum is again over sets of framesi; j; k that have been uniformly sampled and

sorted.

7.1.2 Multi-Scale Temporal Relations

To capture temporal relations at multiple time scales, we use the following composite func-

tion to accumulate frame relations at different scales:

MTN (V) = T2(V) + T3(V)::: + TN (V) (7.3)

Each relation termTd captures temporal relationships betweend ordered frames. EachTd

has its own separateh(d)
� andg(d)

� . Notice that for any given sample ofd frames for eachTd,

all the temporal relation functions are end-to-end differentiable, so they can all be trained

together with the base CNN used to extract features for each video frame. The overall

network framework is illustrated in Fig.7-2.

7.1.3 Ef�cient Training and Testing

When training a multi-scale temporal network, we could sample the sums by selecting

different sets ofd frames for eachTd term for a video. However, we use a sampling scheme

that reduces computation signi�cantly. First, we uniformly sample a set ofN frames from

the video,V �
N � V , and we useV �

N to calculateTN (V). Then, for eachd < N , we choosek

random subsamples ofd framesV �
kd � V �

N . These are used to compute thed-frame relations
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Table 7.1: Statistics of the datasets used in evaluating the TRNs.

Dataset Classes Videos Type
Something 174 108,499 human-object interaction
Jester 27 148,092 human hand gesture
Charades 157 9,848 daily indoor activity

for eachTd(V). This allowsO(kN 2) temporal relations to be sampled while evaluating the

CNN on onlyN frames.

At testing time, we can combine the TRN-equipped network with a queue to process

streaming video very ef�ciently. A queue is used to cache the extracted CNN features of

the equidistant frames sampled from the video, then those features are further combined

into different relation tuples which are further summed up to predict the activity. The

CNN feature is extracted from incoming key frame only once then enqueued, thus TRN-

equipped networks is able to run in real-time on a desktop to processing streaming video

from a webcam.

7.2 Experiments

We evaluate the TRN-equipped networks on a variety of activity recognition tasks. For rec-

ognizing activities that depend on temporal relational reasoning, TRN-equipped networks

outperform a baseline network without a TRN by a large margin. We achieve highly com-

petitive results on the Something-Something dataset for human-interaction recognition [34]

and on the Jester dataset for hand gesture recognition [1]. The TRN-equipped networks

also obtain competitive results on activity classi�cation in the Charades dataset [86], out-

performing the Flow+RGB ensemble models [84, 86] using only sparsely sampled RGB

frames.

The statistics of the three datasets Something-Something dataset [34], Jester dataset [1],

and Charades dataset [86] are listed in Table 7.1. All three datasets are crowd-sourced, in

which the videos are collected by asking the crowd-source workers to record themselves

performing instructed activities. Unlike the Youtube-type videos in UCF101 and Kinetics,

there is usually a clear start and end of each activity in the crowd-sourced video, emphasiz-
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ing the importance of temporal relational reasoning.

7.2.1 Network Architectures and Training

The networks used for extracting image features play an important factor in visual recogni-

tion tasks [83]. Features from deeper networks such as ResNet [37] usually perform better.

Our goal here is to evaluate the effectiveness of the TRN module for temporal relational

reasoning in videos. Thus, we �x the base network architecture to be the same throughout

all the experiments and compare the performance of the CNN model with and without the

proposed TRN modules.

We adopt Inception with Batch Normalization (BN-Inception) pretrained on ImageNet

used in [42] because of its balance between accuracy and ef�ciency. We follow the training

strategies of partial BN (freezing all the batch normalization layers except the �rst one) and

dropout after global pooling as used in [103]. We keep the network architecture of the Mul-

tiScale TRN module and the training hyper-parameters the same for training models on all

the three datasets. We setk = 3 in the experiments as the number of accumulated relation

triples in each relation module.g� is simply a two-layer MLP with 256 units per layer,

while h� is a one-layer MLP with the unit number matching the class number. The CNN

features for a given frame is the activation from the BN-Inception's global average pooling

layer (before the �nal classi�cation layer). Given the BN-Inception as the base CNN, the

training can be �nished in less than 24 hours for 100 training epochs on a single Nvidia

Titan Xp GPU. In the Multi-Scale TRN, we include all the TRN modules from 2-frame

TRN up to 8-frame TRN, as including higher frame TRNs brings marginal improvement

and lowers the ef�ciency.

7.2.2 Results on Something-Something Dataset

Something-Something is a recent video dataset for human-object interaction recognition.

There are 174 classes, some of the ambiguous activity categories are challenging, such

as `Tearing Something into two pieces' versus `Tearing Something just a little bit', `Turn

something upside down' versus `Pretending to turn something upside down'. We can see

that the temporal relations and transformations of objects rather than the appearance of the
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objects characterize the activities in the dataset.

The results on the validation set are listed in Table 7.2a, in which we compare the top1

and top5 accuracy for the base network trained on single frames randomly selected from

each video, the base networks with various frame relation modules, and the multi-scale

TRN-equipped network. Networks with TRNs outperform the single frame baseline by a

large margin, while additional frames included in the relation bring further improvements.

The Multi-Scale TRN with ten crop data augmentation achieves the best performance. To

further evaluate how the contribution of optical �ow improve the result, we train a TRN

with

We also compare the TRN with TSN [103], to verify the importance of temporal orders.

Instead of concatenating the features of temporal frames, TSN simply averages the deep

features so that the model only captures the co-occurrence rather than the temporal ordering

of patterns in the features. We keep all the training conditions the same, and vary the

number of frames used by two models. As shown in the bottom part of Table 7.2a, our

models outperform TSNs by a large margin. This result shows the importance of frame

order for temporal relation reasoning.

We further evaluate how important is the optical �ow information, we train a MultiScale

TRN on optical �ow. It gets 31.63% on the validation set. We further construct a 2-stream

TRN by combining the MultiScale TRN trained on RGB images with the MultiScale TRN

trained on optical �ows (simply average the predicted probabilities from the the two streams

for any given video). The 2-stream TRN further improves the accuracy on the validation

set to 42.01%.

We submit the prediction of the MultiScale TRN and the 2-stream TRN on the test set.

As shown in Table 7.2b, we achieve very competitive scores, compared to other methods at

the leaderboard. Note that most of the methods submitted to the leaderboard are non-public

available methods, which should be considered as concurrent work with our method.
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model Top1 acc.(%)
single frame 11.41
3-frame TRN 26.22
5-frame TRN 30.39
7-frame TRN 31.01
MultiScale TRN 34.44
3-frame TSN 17.30
5-frame TSN 18.11
7-frame TSN 18.48
2-Stream TRN 42.01

(a)

model Top1 acc.(%)
Yana Hasson 25.55
Harrison.AI 26.38
I3D by [34] 27.23
Guillaume Berger 30.48
Besnet 31.66
MultiScale TRN 33.60
2-Stream TRN 39.46

(b)

Table 7.2: (a) Results on the validation set of Something-Something Dataset. All the mod-
els use the center cropping of the equidistant frames in the video. Multi-scale TRN with
10-crop augmentation achieves the best performance. TRN also outperforms TSN in a
large margin, showing the importance of temporal order. (b) Results on the test set of the
Something-Something Dataset. Comparison methods are from the of�cial public leader-
board.

model Top1 acc.(%)
single frame 63.60
2-frame TRN 75.65
3-frame TRN 81.45
4-frame TRN 89.38
5-frame TRN 91.40
MultiScale TRN 95.31

(a)

model Top1 acc.(%)
20BN Jester System 82.34
VideoLSTM 85.86
Guillaume Berger 93.87
Ford's Gesture System 94.11
Besnet 94.23
MultiScale TRN 94.78

(b)

Table 7.3: Jester Dataset Results on (a) the validation set and (b) the test set.

7.2.3 Results on Jester and Charades

We further evaluate the TRN-equipped networks on the Jester dataset, which is a video

dataset for hand gesture recognition with 27 classes. The results on the validation set of the

Jester dataset are listed in Table 7.3a. The result on the test set and comparison with the top

methods are listed in Table 7.3b. MultiScale TRN again achieves competitive performance

as close to 95% Top1 accuracy.

We evaluate the MultiScale TRN on the recent Charades dataset for daily activity recog-

nition. The results are listed in Table 7.4. Our method outperforms various methods such

as 2-stream networks and C3D [86], and the recent Asynchronous Temporal Field (Temp-
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Table 7.4: Results on Charades Activity Classi�cation.

Approach Random C3D AlexNet IDT 2-Stream TempField Ours
mAP 5.9 10.9 11.3 17.2 14.3 22.4 25.2

Field) method [84].

The qualitative prediction results of the Multi-Scale TRN on the three datasets are

shown in Figure 7-3. The examples in Figure 7-3 demonstrate that the TRN model is

capable of correctly identifying actions for which the overall temporal ordering of frames

is essential for a successful prediction. For example, the turning hand counterclockwise

category would assume a different class label when shown in reverse. Moreover, the suc-

cessful prediction of categories in which an individualpretendsto carry out an action (e.g.

`pretending to put something into something' as shown in the second row) suggests that

the network can capture temporal relations at multiple scales, where the ordering of sev-

eral lower-level actions contained in short segments conveys crucial semantic information

about the overall activity class.

This outstanding performance shows the effectiveness of the TRN for temporal rela-

tional reasoning and its strong generalization ability across different datasets.

7.2.4 Interpreting Visual Common Sense Knowledge inside the TRN

One of the distinct properties of the proposed TRNs compared to previous video classi�ca-

tion networks such as C3D [98] and I3D [9] is that TRN has more interpretable structure. In

this section, we have a more in-depth analysis to interpret the visual common sense knowl-

edge learned by the TRNs through solving these temporal reasoning tasks. We explore the

following four parts:

Representative frames of a video voted by the TRN to recognize an activity. Intu-

itively, a human observer can capture the essence of an action by selecting a small collection

of representative frames. Does the same hold true for models trained to recognize the ac-

tivity? To obtain a sequence of representative frames for each TRN, we �rst compute the

features of the equidistant frames from a video, then randomly combine them to generate

different frame relation tuples and pass them into the TRNs. Finally we rank the relation tu-
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Figure 7-3: Prediction examples on a) Something-Something, b) Jester, and c) Charades.
For each example drawn from Something-Something and Jester, the top two predictions
with green text indicating a correct prediction and red indicating an incorrect one. Top 2
predictions are shown above Charades frames.
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ples using the responses of different TRNs. Figure 7-4 shows the top representative frames

voted by different TRNs to recognize an activity in the same video. We can see that the

TRNs learn the temporal relations that characterize an activity. For comparatively simple

actions, a single frame is suf�cient to establish some degree of con�dence in the correct ac-

tion, but is vulnerable to mistakes when a transformation is present. 2-frame TRN picks up

the two frames that best describe the transformation. Meanwhile, for more dif�cult activity

categories such as `Pretending to poke something', two frames are not suf�cient informa-

tion for even a human observer to differentiate. Similarly, the network needs additional

frames in the TRNs to correctly recognize the behavior.

Thus the progression of representative frames and their corresponding class predictions

inform us about how temporal relations may help the model reason about more complex

behavior. One particular example is the last video in Figure 7-4: The action's context given

by a single frame - a hand close to a book - is enough to narrow down the top prediction

to a qualitatively plausible action, unfolding something. A similar, two-frame relation

marginally increases the probability the initial prediction, although these two frames would

not be suf�cient for even human observers to make the correct prediction. Now, the three

frame-relation begins to highlight a pattern characteristic to Something-Something's set

of pretendingcategories: the initial frames closely resemble a certain action, but the later

frames are inconsistent with the completion of that action as if it never happened. This

relation helps the model to adjust its prediction to the correct class. Finally, the upward

motion of the individual's hand in the third frame of the 4-frame relation further increases

the discordance between theanticipatedandobserved�nal state of the scene; a motion

resembling the action appeared to take place with no effect on the object, thus, solidifying

con�dence in the correct class prediction.

Temporal Alignment of Videos. The observation that the representative frames identi-

�ed by the TRN are consistent across instances of an action category suggests that the TRN

is well suited for the task of temporally aligning videos with one another. Here, we wish to

synchronize actions across multiple videos by establishing a correspondence between their

frame sequences. Given several video instances of the same action, we �rst select the most

representative frames for each video and use their frame indices as “landmark”, temporal
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Figure 7-4: The top representative frames determined by single frame baseline network,
the 2-frame TRN, 3-frame TRN, and 4-frame TRN. TRNs learn to capture the essence of
an activity only given a limited number of frames. Videos are from the validation set of the
Something-Something dataset

anchor points.Then, we alter the frame rate of video segments between two consecutive

anchor points such that all of the individual videos arrive at the anchor points at the same

time. Fig.7-5 shows the samples from the aligned videos. We can see different stages of

an action are captured by the temporal relation. The temporal alignment is also an exclu-

sive application of our TRN model, which cannot be done by previous video networks 3D

convNet or two-stream networks.

Importance of temporal order for activity recognition . To verify the importance of

the temporal order of frames for activity recognition, we conduct an experiment to com-

pare the scenario with input frames in temporal order and in shuf�ed order when training

the TRNs, as shown in Figure 7-6a. For training the shuf�ed TRNs, we randomly shuf�e

the frames in the relation modules. The signi�cant difference on the Something-Something

dataset shows the importance of the temporal order in the activity recognition. More inter-

estingly, we repeat the same experiment on the UCF101 dataset [92] and observe no dif-

ference between the ordered frames and shuf�ed frames. That shows activity recognition

for the Youtube-type videos in UCF101 doesn't necessarily require the temporal reasoning

ability since there are not so many casual relations associated with an already on-going

activity.

To further investigate how temporal ordering in�uences activity recognition in TRN,

we examine and plot the categories that show the largest differences in the class accuracy
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Figure 7-5: Temporal alignment of videos from the (a) Something-Something and (b) Jester
datasets using the most representative frames as temporal anchor points. For each action, 4
different videos are aligned using 5 temporal anchor points.

between ordered and shuf�ed inputs drawn from the Something-Something dataset, in Fig-

ure 7-6b. In general, actions with strong `directionality' and large, one-way movements,

such as `Moving something down', appear to bene�t the most from preserving the correct

temporal ordering. This observation aligns with the idea that the disruption of continu-

ous motion and a potential consequence of shuf�ing video frames, would likely confuse a

human observer, as it would go against our intuitive notions of physics.

Interestingly, the penalty for shuf�ing frames of relatively static actions is less severe

if penalizing at all in some cases, with several categories marginally bene�ting from shuf-

�ed inputs, as observed with the category `putting something that can't roll onto a slanted

surface so it stays where it is'. Here, simply learning the coincidence of frames rather than

temporal transformations may be suf�cient for the model to differentiate between similar

activities and make the correct prediction.

Particularly in challenging ambiguous cases, for example `Pretending to throw some-

thing' where the release point is partially or completely obscured from view, disrupting
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Figure 7-6: (a) Accuracy obtained using ordered frames and shuf�ed frames, on
Something-Something and UCF101 dataset respectively. On Something-Something, the
temporal order is critical for recognizing the activity. But recognizing activities in UCF101
does not necessarily require temporal relational reasoning. (b) The top 5 action categories
that exhibited the largest gain and the least gain (negative) respectively between ordered
and shuf�ed frames as inputs. Actions with directional motion appear to suffer most from
shuf�ed inputs.
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Figure 7-7: t-SNE plot of the video samples of the 15 classes using the deep features from
the single-frame baseline, 2-frame TRN, and 5-frame TRN. Higher frame TRN can better
differentiate activities in Something-Something dataset.

a strong `sense of motion' may bias model predictions away from the likely alternative,

`throwing something', frequently but incorrectly selected by the ordered model, thus giv-

ing rise to a curious difference in accuracy for that action.

t-SNE visualization of activity similarity . Figure 7-7 shows the t-SNE visualization

for embedding the high-level features from the single frame baseline, the 3-frame TRN, and

the 5-frame TRN, for the videos of the 15 most frequent activity classes in the validation

set. We can see that the features from 2-frame and 5-frame TRNs can better differentiate ac-

tivity categories. We also observe the similarity among categories in the visualization map.

For example, `Tearing something into two pieces' is very similar to `Tearing something

just a little bit', and the categories `Folding something', `Unfolding something', `Holding

something', `Holding something over something' are clustered together.
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Table 7.5: Early activity recognition using the MultiScale TRN on Something-Something
and Jester dataset. Only the �rst 25% and 50% of frames are given to the TRN to predict
activities. Baseline is the model trained on single frames.

Something Jester
Data baseline TRN baseline TRN

�rst 25% 9.08 11.14 27.25 34.23
�rst 50% 10.10 19.10 41.43 78.42

full 11.41 33.01 63.60 93.70
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Figure 7-8: Early recognition of activity when only given the �rst 25% frames. The �rst
25% of each video, represented by the �rst frame shown in the left column, is used to
generate the top 3 anticipated forecasts and corresponding probabilities listed in the middle
column. The ground truth label is highlighted by a blue arrow which points to the last
frame of the video on the right.

127



Early Activity Recognition . Recognizing activities early or even anticipating and fore-

casting activities before they happen or fully happen is a challenging yet less explored

problem in activity recognition. Here we evaluate our TRN model on early recognition

of activity when given only the �rst 25% and 50% of the frames in each validation video.

Results are shown in Table 7.5. For comparison, we also include the single frame baseline.

We see that TRN can use the learned temporal relations to anticipate activity. The perfor-

mance increases as more ordered frames are received. Figure 7-8 shows some examples

of anticipating activities using only �rst 25% and 50% frames of a video. A qualitative

review of these examples reveals that model predictions on only initial frames do serve as

very reasonable forecasts despite being given task with a high degree of uncertainty even

for human observers.
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Chapter 8

Discussion and Future Work

The majority of this thesis has focused on advancing the frontier of visual intelligence to-

ward human-level scene recognition and a deeper understanding of how this level of recog-

nition is accomplished in complex deep neural network models. I would like to conclude

this thesis with the future direction. My future work involves developing interpretable and

ef�cient intelligent systems that can effortlessly understand the visual world and interact

with the environment around them. My research will progress along the following paths:

Video Scene Understanding. I aim to scale visual recognition systems from process-

ing scenes in still images to handling the much more complex scenes that occur in videos.

I have begun work in this direction by developing the Moments Dataset [63] which con-

tains 1 million videos that have been annotated according to over 300 atomic action classes,

such as “opening”, “rolling” and “bouncing”. Using Moments, I will explore holistic scene

understanding approaches that are able to recognize objects and their spatial context, as

well as dynamic interactions and events between objects. For example,cookingis com-

posed of several atomic actions, such aswashingbowls, cutting vegetables, andboiling

water; my goal would be to identify each of them and their chain relations. This kind of

video scene understanding will have broad real-world applications in robotics and visual

analytics. I will further interpret the models of video recognition, to understand their suc-

cesses and failures, and the visual knowledge learned inside, thus eventually improve their

performance.

Human and Object Interactions in Scenes. To navigate inside a complex scene, a
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major challenge for robot visual systems is learning to execute actions. Most actions that

we take when interacting with objects are part of a complex causal chain. If a system

can understand cause-and-effect relationships, it can then make a multi-step plan toward

a goal. I recently started investigating ef�cient and interpretable models that can discover

the time-dependent causalities in videos, such as inferring the ways in which objects are

transforming between one timestamp and another [118]. It is crucial to build perception

systems that are able not only to recognize the objects and their scene context, but also

to forecast and anticipate the consequences of potential actions that may be taken in a

particular scene.

Developing Interpretable and Explainable Machine Learning Models. Various net-

work architectures and training methods have been proposed to boost model performance.

However, little research has been done to improve model interpretability. Following my

work on Network Dissection which is able to measure interpretability, my next step is to

improve the interpretability of deep models. Some of these models have recently demon-

strated better-than-human performance on various challenging tasks, including playing

Go [87] and diagnosing skin cancer [21]. What knowledge has been learned by and stored

within these models? How can Go players or dermatologists bene�t from this knowledge?

I will investigate novel approaches for extracting knowledge from such machine learning

models used in visual recognition, autonomous driving and medical diagnosis. I will create

new human-computer interfaces capable of translating the knowledge into understandable

and useful tools for human learning. Through these efforts, I hope to push the boundaries of

interpretable AI and advance multiple relevant scienti�c �elds such as healthcare domain

where it is crucial to have interpretable and explainable machine learning models.
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