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Adversarial Inverse Reinforcement Learning with
Self-attention Dynamics Model

Jiankai Sun!, Lantao Yu?2, Pingian Dong3, Bo Lu!, and Bolei Zhou!

Abstract—In many real-world applications where specifying a
proper reward function is difficult, it is desirable to learn policies
from expert demonstrations. Adversarial Inverse Reinforcement
Learning (AIRL) is one of the most common approaches for
learning from demonstrations. However, due to the stochastic
policy, current computation graph of AIRL is no longer end-to-
end differentiable like Generative Adversarial Networks (GANSs),
resulting in the need for high-variance gradient estimation meth-
ods and large sample size. In this work, we propose the Model-
based Adversarial Inverse Reinforcement Learning (MAIRL), an
end-to-end model-based policy optimization method with self-
attention. By adopting the self-attention dynamics model to make
the computation graph end-to-end differentiable, MAIRL has the
low variance for policy optimization. We evaluate our approach
thoroughly on various control tasks. The experimental results
show that our approach not only learns near-optimal rewards
and policies that match expert behavior but also outperforms
previous inverse reinforcement learning algorithms in real robot
experiments. Code is available at https://decisionforce.github.io/
MAIRL/.

Index Terms—Imitation Learning, Learning from Demonstra-
tion

I. INTRODUCTION

EINFORCEMENT learning (RL) has emerged as a

promising tool for solving complex decision-making
tasks from the predefined reward functions [1]]. However,
defining a reward function that induces the desired behavior
can be challenging for many robotic applications such as dex-
terous manipulation [2] and autonomous driving [3]-[5]. To
address the above problem, Inverse Reinforcement Learning
(IRL) [6] is proposed to learn reward function from expert
demonstrations. The learned reward function is considered
to be more generalizable than the learned policy and might
achieve better performance in transfer learning [/7].

Recently, inspired by GANs, AIRL methods in the model-
free setting are proposed to directly learn the policy resulting
from the full Markov decision process [8[]. The issue of
the AIRL rises when training stochastic policies, where the
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backpropagation flow of gradients from the discriminator to
the generator is broken down by the stochasticity of the policy.
Hence, the adversarial training framework is no longer end-to-
end differentiable, which is different from the GAN training.
Thus the high-variance gradient estimator has to be used to
address the non-differentiable training in AIRL, making the
training unstable and prone to sub-optimal policies.

One intuitive way to improve AIRL is introducing a pre-
dictive dynamics model to make the computation graph fully
differentiable. The strength of this model-based approach is
that it enables updating the policies using the exact gradient
from the recovered reward signal, resulting in a lower training
variance. However, one typical drawback of the model-based
approaches is the approximation error of the parameterized dy-
namics model. In many complex robotic control applications,
learning accurate dynamics of a system from observations
remains challenging. Recently, self-attention models bring
breakthroughs in natural language processing [9] and com-
puter vision [[10] due to its capability of effectively modeling
temporal information over a long time horizon. Meanwhile,
self-attention dynamics model avoids compressing the whole
past into a fixed-size hidden state and does not suffer from
vanishing or exploding gradients in the same way as RNNs.
Thus our work adopts the self-attention in the dynamics model
to capture the transition information with a long time horizon.
We show that the proposed self-attention dynamics model
consistently matches or outperforms the traditional recurrent
architectures (e.g., GRUs), as well as the Feedforward Neural
Networks (FNNs), in a range of tasks.

In this work, we integrate Maximum Entropy IRL [11],
model-based reinforcement learning, and self-attention [9],
into a unified graphical model that bridges the gap between
reward inference and learning from demonstrations. Fig. [I]
illustrates the proposed method. Experimental results show
significant improvements over the existing methods. We sum-
marize our contributions as follows:

1 We introduce a novel framework, Model-based Adversar-
ial Inverse Reinforcement Learning (MAIRL), to make
the previous AIRL pipeline end-to-end differentiable. It
updates policy using the exact gradient rather than high-
variance gradient estimation, leading to more accurate
reward function.

2 To address the approximation error in the dynamics
model, we propose to use self-attention to enhance the
model’s ability to process transition information over long
time horizons.

3 Extensive experimental results show that the proposed
MAIRL framework can recover the reward function for
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transfer learning. It can also achieve state-of-the-art per-
formance on the AIRL benchmark. We further deploy the
proposed method to a real robotic platform for the tasks
of learning from demonstrations.

II. RELATED WORK

Adversarial Methods for Maximum-Entropy Inverse Re-
inforcement Learning. In contrast to reinforcement learning
which relies on pre-defined reward functions, the goal of IRL
is to learn the reward function r from the demonstrations
so that RL policy can be further learned. Maximum-Entropy
IRL [11] models the expert demonstrations as Boltzmann
distribution using parametrized reward r¢(7) as an energy
function, )

pe(r) = - exp(re(7), (1)
where r¢(7) = ZiT:o re(se,a;) is a commutative reward
function parameterized by & over the given trajectory 7, and
Z = [exp(re(r))dr is the partition function (normaliza-
tion constant). Principal benefits of the Maximum Entropy
paradigm include the ability to handle expert suboptimality
as well as the stochasticity by operating on the distribution
over possible trajectories. The main challenge in Maximum-
Entropy IRL is that it is generally intractable to compute Z,
an integral over the trajectory space. Recent adversarial meth-
ods for Maximum-Entropy IRL [8]], [[12] present Importance
Sampling (IS) technique to approximate Z under unknown
dynamics. AIRL [|12]] is a representative model-free adversarial
IRL framework based on GAIL [8f], maximum entropy IRL
framework [11]], and Guided Cost Learning (GCL) [2[]. Nev-
ertheless, the introduced gradient estimation technique makes
AIRL suffer from a high variance of training.

Model-based Reinforcement Learning. As a promising
candidate for real-world sequential decision-making prob-
lems, model-based reinforcement learning methods have many
strengths, such as analytic gradient computation. There is
an extensive literature on learning a dynamics model and
using the learned model to train a policy via model-based
planning. PILCO [13] uses a Gaussian process to model
system dynamics. PETS [14] combines uncertainty-aware deep
network dynamics models with sampling-based uncertainty
propagation. World Models [15] learn latent dynamics in a
two-stage process to evolve linear controllers in imagination.
Dreamer [16]] solves visual locomotion tasks by latent online
planning. MGAIL [17] introduces a forward model in GAIL,
but its discriminator is unsuitable as a reward since, at opti-
mality, it outputs 0.5 uniformly across all states and actions,
which is a less portable representation for transfer. Desired
dynamics models should be able to capture long-term time
dependencies. Developing internal models with FNNs, RNNs,
or latent dynamics to reason about the future has been explored
in the works mentioned above.

Different from previous work, we adopt self-attention [9] in
the dynamics model. Compared with RNNs, the advantages
of self-attention includes avoiding compressing the whole
past into a fixed-size hidden state, less total computational
complexity per layer, and more parallelizable computations.

In the experiments, we will demonstrate the strengths of the
self-attention dynamics model.

III. BACKGROUND

Consider a Markov Decision Process (MDP) represented
as a tuple (S, A, P,r, pg,7y) with state space S, action-space
A, dynamics P : § x A x § — [0,1], reward function
r(s,a), initial state distribution py : S — R, and discount
factor v € (0,1). Let m be a stochastic policy that takes
a state and outputs a distribution over actions. Let 7 and
Tr denote trajectories (i.e., sequences of state-action pairs
(so0, a0, - ,S7,ar)) generated by a policy 7 and an expert
policy mg, respectively, where T' denotes the time horizon.
Our method is built upon AIRL [12] and MGAIL [17], so we
first introduce them briefly as follows.

A. Adversarial Inverse Reinforcement Learning (AIRL)

Fig. 2: Computation graph of the model-free AIRL

Inspired by GANs, AIRL [[12] is a model-free adversarial
learning framework that learns a generative model from the
two-player adversarial training of the generator and discrimi-
nator.

The discriminator is trained to minimize the cross-entropy
loss between expert demonstrations and generated samples:

T

L(D) == E,0 40, log D(s,a™)]
t=0
- )
- Z ]ES’(”) ,a’(‘)N’D[l - 10g D(S/<t)v al(t))]v
t=0

where D is the discriminator that performs the binary clas-

sification to distinguish between samples generated by 7 and
7w, D is the experience buffer of 7, 75 are expert trajectories
generated by 7g. In contrast to GAIL [8], which can not
recover the reward function, AIRL can recover the reward
function along with the policy by imposing the following form
on the discriminator (for the sake of simplicity, we ignore the
parameter notations):

exp{f(s,a)}
exp{f(s,a)} +m(als)’

where f(-) is restricted to a reward approximator ¢(-) and a
shaping term h(-). The policy 7 is trained to maximize the
entropy-regularized discriminative reward:

D(s,a) =

3

7(s,a) = log(D(s,a)) —log(1 — D(s,a))

= f(s,a) —logm(als). @
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Fig. 1: Computation graph of Model-based Adversarial Inverse Reinforcement Learning (MAIRL). At time ¢ of the
forward pass, action a; is sampled from the output action distribution of 7 with re-parametrization trick: a; = 7(s;) + € ® o,
where € ~ N(0,1). The next state s;11 = F(s¢, a¢) is computed using the forward model F, and the entire process repeats for
time ¢ 4 1. For the backward pass, the gradient of m comprises the direct backpropagation through the action stream from the
differentiable entropy-regularized discriminative reward 7 and the backpropagation through state stream of future time-steps
via the differentiable forward model F. f(-) is restricted to a reward approximator g(-) and a shaping term h(-)

Thus, when #(s,a) is summed over entire trajectories, the
entropy-regularized policy objective is obtained,

Zf(st,at)] =E,

T
Ex Zf(st,at) —logm(alst)| . (5)
t=0

However, one shortcoming of the new game defined in
AIRL is that it can no longer be solved using the standard
gradient descent/ascent because generator G (the policy 7) is
now stochastic. As illustrated in Fig. 2} gradient J, in model-
free AIRL can not be adopted to update policy. In the back-
propagation phase, the gradient s is discarded for policy
updating, while the gradient §, is blocked at the stochastic
sampling unit, where a high-variance gradient estimation dp,,
is used. Discarding Js can be disastrous. Hence, model-
free AIRL updates policy without effective use of Jg, and
suffers from high variance. Owing to stochastic properties
of the policy, the exact form of Equation (5) is given by
Esrp, (s)Eann(a)[7(5,a)], instead of By, [F(s, m(s)] if m was
deterministic. Hence, assuming 7 = g, it is no longer possi-
ble to apply gradient ascent to differentiate Equation (3 w.r.t.
4. An alternative solution is to obtain a gradient estimation
by REINFORCE method [[18]:

(6)

where Q(3,a) = K., [F(s,a)|so = 8,ap = @] is the score func-
tion of the gradient. Nevertheless, REINFORCE tends to suffer

Vo, Ex[7'(s,a)] = IAETi [Q(s,a)Vy, log g, (als)],

from high training variance, which makes it difficult to work
with even after applying variance reduction techniques [[19].

B. MGAIL Algorithm

To make the computation of GAIL fully differentiable,
MGAIL [17] introduces a forward dynamics model F, in
which the information propagates fluently from the discrim-
inator D to the generative model G. For the policy learning
process in MGAIL, the gradient of policy 7 is computed from
the Jacobian of the discriminator D:

8D(S157 at)
89 s=st,a=at
_OD0a|  , 8Dbs
T 0a 00|, ,  0sa0|_, )
_9D ba oD (0F 0s 9F Ba
T 94 90|, 0s\0so0|_,  ~ 0adl|,_, |

For a multi-step computation graph, the policy gradient
objective is given by J(0) = E[>,_,v'D(si,ar)|0]. J(0)
can be differentiated over a trajectory of (s, a,s’) transitions
by recursively applying Equations (8) and () starting from
t =T all the way down to ¢ = O:

o _ . [é)D orom 8t (6]—'+8]-'87r>} ®
a5 raloBels0) | 50 T 5055 T \ s T ea 85/ |
o _ . oDom (9 OF om  oJ ©
90 = el Bp(ssa) | 54 Ba ds’ 0a 00 ' 96 )|’



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021

Define policy likelihood ratio ¢(s,a) and state distribution
likelihood ratio 1(s) as

o(s,a) = plals, 7g) p(s|mTE)

) ¢ S)= —F7—~>
plalsm V= i
then the partial derivatives of D can be reformulated as the
Jacobian of the discriminator:

oD da(s,a)(s) oD

(10)

s(s,0)1(s) + d(s, a)s(s)

da (1+4(s,a)0(s))?" 0s (1+ (s, a)i(s))?

11

The major disadvantage of MGAIL comes to light when

trying to recover robust reward functions. Its discriminator out-

puts 0.5 uniformly across all states and actions at optimality,

thus is unsuitable as a reward function. This makes MGAIL

perform poorly when learning policies under the environment
with significant variations.

IV. OUR METHOD

To address the shortcomings of previous methods, we pro-
pose MAIRL, a differentiable adversarial inverse reinforce-
ment learning algorithm with a forward dynamics model.
MAIRL does not suffer from the high variance occurred in
AIRL because MAIRL updates policy parameters with exact
gradient thus REINFORCE method is not required. As a
model-based approach, in contrast to MGAIL, MAIRL can re-
cover a generalizable and portable reward function and achieve
better performance on tasks that require transfer learning.

A. Self-attention Dynamics Model

To make the framework end-to-end differentiable without
high-variance gradient estimation, the crucial component is
the dynamics model. However, learning an accurate dynamics
model is challenging [20]. Thus, we introduce self-attention
dynamics model s;y1 = JF(s¢,a¢), which can performs
accurate long-term temporal predictions, enabling MAIRL to
learn successful behaviors.

Our self-attention dynamics model (cf. Fig.|l)) adopts Scaled
Dot-Product [9]] to compute attention A(s;,a;) by

Qs)K (ar)"
A(Q(st), K (at), V(at)) = softmax ( N ) V(at)(,lz)

where queries ()(s;) are state embedding of dimension dg,

keys K (a;) are action embedding of dimension dj, and values
V(a¢) are action embedding of dimension d,. Note that
K(a;) and V(a;) use independent embedding network and
do not share parameters. To jointly attend the information
from different representation subspaces of state embeddings
and action embeddings, multi-head attention module M (s;, a;)
is adopted:

M (Q(st), K (ar), V(ar)) = Concat(head;, - - - ,head,)W©, (13)

where head; = A(Q(s) W2, K (a )W, ),V (ar) W, ).

The projections are parameter matrices WZQ @) ¢ Rdmoderxdi
WiK c R%modet X d , WiV c RémodetXdv  and
WO ¢ Rhdv*dmoaer  Finally, we get the forward dynamics

Algorithm 1 Model-based Adversarial Inverse Reinforcement
Learning (MAIRL)

Require: Expert trajectories 7g, Experience buffer D, initial
forward dynamics model parameters 6, initial policy and
discriminator parameters 0, 4, terminal time 7', entropy-
regularized discriminative reward 7.

Ensure: Weights 07, 04, 04
Or, 04, 04 < Initialize parameters.
repeat

for t =0to T do
Collect data with 7 in real environment: D = D U
{(3t7 A, 5;)}
end for
Train forward dynamics model F on buffer D via
maximum likelihood: 07 < argmax,,  Ep[log F(s'[s,a)]
((cf. Section
Train discriminator model Dy, using D by minimizing
Equation/ ((cf./ Section
Set jog = Oajs =0
for t =T down toOdq )
Jo, = [Famo, +V(jgFamo, + o, )l

'Faﬂ-s + r}/];/(]:s + faﬂﬁg)]‘
end for
Update 0, by applying gradient jgg ((cf. Section
until convergence of parameters (07, 8,4, 64)
return 0r, 0,, 04

> js:[fs'f'

€

€

model after adding a decoder Dec|] to the output of
self-attention module:

se41 = F(st,at) = Dec[M(Q(s¢), K(at),V(az))]  (14)

Forward dynamics model F is trained on a trajectory of
(s,a,s’) transitions sampled from buffer D via maximizing
the maximum likelihood

L(OF) =E(s,q,s)~pllog F(s'|s,a)] (15)

B. Differentiable Entropy-regularized Discriminative Reward

We start by analyzing the characteristics of the entropy-
regularized discriminative reward function, which is different
from MGAIL. Given the definition of #(s,a) in Equation
we can get the formula of % and %, which will be used in

Section [V-C}

o 19D 1 D
s D&s 1—D ds’
0i _ 10D 1 0D (o
da D da 1—D da’

From the Jacobian of D in Equation[IT] the partial derivatives
of 7 are

¢s(s,a)p(s) + P(s,a)ps(s) OF
d(s,a)i(s)

o

or _ _ _%al(s,0)9(s)
Js

"0 (s, a)y(s)
an
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C. Policy Learning in MAIRL

Different from MGAIL, our MAIRL updates policy from
reward function 7(s,a) rather than the direct output of dis-
criminator D. For the policy learning process in MAIRL,
the gradient of policy m comprises two parts: 1) the direct
backpropagation through action stream from the differentiable
reward 7, and 2) the backpropagation through the state stream
of future time-steps via the differentiable forward model.

a) Backpropagating through State Stream via a Forward
Model. : In the model-based approach, s; can be written as a
function of the previous state and action: sy = F(s¢—1,a¢—1),
where F is the forward model (cf. Fig. [T). Using the law
of total derivatives, we get the gradient backpropagated from
7(s,a) is:

ng(st,at)
s=st,a=at (18)
_oioa| o (oFos oF 0a
" da 00 ama, Os\O0sOO|_. ~— 0adl|,_, . '

Note that #(s;, a;) is not the direct output of discriminator
D, which is different from MGAIL. The policy gradient
objective for a multi-step computation graph is given by
J(0) = E[>,_o7'"(s¢, ar)|0). Similar to SVG [21]], we can
differentiate J(6) over a trajectory of (s,a,s’) transitions by
recursively applying Equations and starting from
t = T all the way down to ¢ = 0 and thus the final policy
gradient VyJ can be calculated as

9l _ o s [af oron  8J <8}' L OF 871')} (19
ds  PLl)Tp(’lsa) | 55T B4 Bs 7Bs’ Os da Os ’

o7 _ . . [af o (aJ/ OF om aJ’ )} 0
a0 — Pl else) | 5, 9 ds’ 9a 90 ' 90 )|’

b) Backpropagation through Action Stream. : For contin-
uous action distribution, assume a stochastic Gaussian policy
mo(als) = po(s) + o3 (s) ® €, where € ~ N(0,1), mean and
variance are given by deterministic functions pg, og. © denotes
the element-wise product. The derivative of the expected value
of #(s, a) with respect to 6 is

VQEW(a\s)f(Sa a) = Ep(e) vaTA(Sv CL)Vgﬂ'g ((Z|5)
M
1 X 2D
=17 Zvar(s,a)ngg(a\s) —
i=1
For discrete action distribution, concrete distribution [22], [23]
can be used here to relax the discrete action distribution to be
continuous and differentiable with reparameterization trick:

exp((log m(ails) + :)/7]

k )
> =1 exp[(log m(a;|s) + g;)/7]
where 7 1is the temperature hyper-parameter, ¢g; =
—log(—log(U?)) is the ith Gumbel random variable, U®
is a uniform random variable. In [22], it is proved that
p(lim; o a; = 1) = logm(a;|s)/ (37—, log m(aj|s)), making
this relaxation unbiased once converged. This renders 7 (s, a)

differentiable for discrete action distribution. Algorithm [i]
shows the complete training procedure.

(22)

i =

V. EXPERIMENTS

We first verify that our method can recover the ground-truth
reward function in a diagnostic environment more accurately
than the previous inverse RL methods. We then evaluate
MAIRL on the continuous control tasks and show that it
achieves better performances in both transfer learning and
imitation learning settings. Finally, the proposed method is
demonstrated on a robot platform URS with a higher success
rate on the Reaching and Grasping task. We compare the
average episode reward of different methods in simulation and
report the average success rate of different methods with URS
robotic arm. These metrics are computed for each method
averaged over 100 test runs.

A. Training Details

For a fair comparison, our imitation learning framework
shares the same training hyperparameters with baselines such
as AIRL and GAIL, if not stated otherwise. We use a two-
layer ReLU network with 32 units for the discriminator. For
MAIRL and AIRL, the reward approximator g(-) and shaping
term h(-) are two-layer FC network with 32 units, respectively.
For the policy, we also use a two-layer ReLU neural network
with 32 units. Entropy regularizer weight is set as 0.1. We
use a batch size of 512 steps per update and 1" = 100. The
learning rate for the generator and forward dynamics model
is 0.0001. The learning rate for discriminator is 0.001. For
the Forward Dynamics Model F, we use two-layer fully-
connected network with 32 units for embedding ), K, V and
Decoder Dec|-] respectively, which do not share weights. The
size of buffer D is 1M. In this work, we employ 4 parallel
attention heads, d,,,q.; = 64. For each of attention head we
use dq = dk = dv = dmodel/4 = 16.

B. Discrete Control Tasks

To demonstrate that MAIRL can recover the reward func-
tion, we begin with a diagnostic environment GridWorld where
the state-space is finite. GridWorld task has 25 states, 5
actions (Stop, Left, Right, Up, Down), and the ground-truth
reward function is presented in Fig. [Bp. The initial state
is randomly generated. The quantitative results of imitation
learning with two input modes, state (s) and state-action (s, a),
for GridWorld is shown as Table [l For the discrete control
task, which is relatively simple, MAIRL performs better than
AIRL in both input modes. Qualitatively, the heatmaps of
ground truth reward and learned reward for GridWorld with
various inverse reinforcement learning algorithms are plotted
in Fig. It reveals that MAIRL with a state-only reward
function can recover the ground truth reward. Ours and the
ground-truth are similar: where the ground-truth reward is
high, our method is also high, and where the ground-truth
reward is low, our method is also low. LP can only find one
high reward area. The transition areas between high rewards
and low rewards in AIRL are different from the ground-truth.

C. Policy Learning Performance in Imitation Learning

We further benchmark the MAIRL for imitation learn-
ing in various standard continuous control tasks, including
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TABLE I: GridWorld Results

Methods | Reward
Expert 15.09 £ 1.56
GAIL 14.01 +£1.21
GAN-GCL 10.90 + 2.42
AIRL(s,a) 14.06 + 1.64
AIRL(s) 13.10 £ 2.31 (a) Ground-truth
Ours(s) 15.02 +1.35
Ours(s, a) 15.00 £ 2.09

TABLE II: The evaluation of imitation learning on benchmark
control tasks. Mean scores (higher the better) with standard
deviation are presented for each method

Methods | Environments
|  HalfCheetah-v2 | Ant-v2
Expert 2811.02 4 448.44 1823.90 + 655.70
MGAIL 2924.00 £ 23.51 2809.41 + 12.51
GAIL 2159.00 £ 15.72 2738.72 £ 9.49
GAN-GCL 281.00 £ 32.54 16.96 + 0.01
AIRL(s,a) 2983.00 + 251.62 2645.90 + 41.75
AIRL(s) 1020.00 % 359.98 809.90 £ 415.80

MAIRL (s,a) ‘ 3186.40 £ 65.28 ‘ 3321.5 + 67.28

TABLE III: Evaluation Success Rate (%) on URS. Our ap-
proach outperforms the other baselines on the tasks of reaching
a block with a significant margin, however, it is still much far
from perfect completion of the task

Method | Reaching  Grasping
Expert 100 100
Random 0 0
MGAIL(s,a) 45 14
GAIL(s,a) 35 13
AIRL(s,a) 36 10
MAIRL(s,a) 52 21

HalfCheetah-v2, Ant-v2. For each task, we provide 50 expert
demonstrations generated by a policy trained on a ground-
truth reward using TRPO [24]. Table [[I| presents the means and
standard deviations of imitation learning performance scores.
It can be seen that MAIRL(s, a) surpasses the AIRL(s, a) in
most tasks and successfully learns to imitate the expert policy,
whereas AIRL(s) and GAN-GCL fail.

D. Training and Evaluation on Real Robot Platform

Current IRL research mostly uses the simulation envi-
ronment as the evaluation platform. There remains a gap
between simulation and real-world applications. To evaluate
the methods in real environment, we conduct experiments
across two tasks: Reaching a block and Grasping (cf. Fig. ).
These tasks are easy to solve in simulation but can be difficult
for real-world robots [23]], [26].

The robot arm system used in the experiment is URS,
a lightweight and flexible industrial robot with six joints
manufactured by Universal Robots. We introduce the setup
of the imitation learning task on the URS so that an off-the-
shelf implementation of a standard IRL method can perform

i“
o
o
o
o
! -.E 00

(b) LP [|§|] (c) AIRL | . (d) Ours

Fig. 3: Reward Maps. Rewards learned by our method are closer to the ground-
truth rewards than those learned by AIRL. LP learns a suboptimal reward function

Fig. 4: Reaching and Grasping Task on UR5 Robot Platform

effectively and reliably. Firstly, we look at “Reaching a block™
task on a real robotic platform using URS5 following [27].
Different from their reinforcement learning tasks, our agent
learns to achieve tasks by imitating expert demonstrations in
our setting. URS Reacher is a task with all six joints actuated.
The observation space s includes the joint angles, the joint
velocities, and the vector difference between the target and
the fingertip coordinates. The action space a include angular
degrees for each joint angle. Angular speed is constrained
between [—0.3,40.3]rad for each time step. UR5 Reacher
consists of episodes of interactions, where each episode is
100 time steps long to allow adequate exploration. The fin-
gertip of URS Reacher is confined within a 3-dimensional
0.7m x 0.5m x 0.4m boundary. The robot is also constrained
within a joint-angular boundary to avoid self-collision. At each
episode, the target position is fixed, and the arm starts from
the middle of the right boundary.

For the Grasping task, on the basis of reaching, a vacuum
suction cup is equipped at the end of UR5 and controlled by
the digital output of URS. It can provide a 6.86N adsorption
force under 0.6MPa powered by a vacuum compressor. And
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the action space is added one dimension to control the trigger
of the vacuum gripper suction cup. The suction cup state is
also added to the observation space.

In the task of Reaching, the robot is required to start at a
given location and then move to a goal location of the block.
Since the controller of the robot is imperfect, we consider a
reach to be successful if the robot reaches within 5¢cm of the
block. We consider Grasping to be successful if the robot
reaches and succeeded in grasping the target object. For all
these tasks, at each episode, the target position for training
and evaluation is chosen randomly within the boundary. The
URS5 robotic arm is controlled by human volunteers to reach
the target, and thus 50 expert demonstration trajectories are
generated. All methods are trained on a real URS robotic arm
for 5000 episodes. As shown in Table the approach of
using MAIRL outperforms the other methods.

Even though adversarial imitation learning strategy has
succeeded in simulation environments, real robotic grasping
lags far behind human performance and remains unsolved
in the field of robot learning. Sometimes even though the
grasping action is executed, the grasping is not successful
because of the irregular shape of the object. For example,
objects with regular shapes such as balls are easier to grasp,
but irregular objects such as instant noodle buckets are very
difficult to grasp.

VI. CONCLUSION

We present an end-to-end differentiable Model-based Ad-
versarial Inverse Reinforcement Learning framework. Our ap-
proach addresses the high-variance gradient estimator problem
in previous AIRL and learns a policy using the exact gradient.
Experiments show the strengths of using a dynamics model
with self-attention over the model-free approaches and other
baselines in terms of improved performance, and the potential
application to the real-world robots.

REFERENCES

[1] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[2] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in International Conference on
Machine Learning, 2016, pp. 49-58.

[3] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles for
autonomous vehicles from demonstration,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 2641-2646.

[4] J.Huang, S. Xie, J. Sun, Q. Ma, C. Liu, D. Lin, and B. Zhou, “Learning a
decision module by imitating driver’s control behaviors,” in Proceedings
of the Conference on Robot Learning (CoRL) 2020.

[5] J. Sun, H. Sun, T. Han, and B. Zhou, “Neuro-symbolic program search
for autonomous driving decision module design,” in Proceedings of the
Conference on Robot Learning (CoRL) 2020.

[6] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in Proceedings of the Seventeenth International Conference on
Machine Learning, ser. ICML *00. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2000, p. 663—670.

[7]1 A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from multiple
demonstrations,” in Proceedings of the 25th International Conference on
Machine Learning, 2008, pp. 144-151.

[8] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in Neural Information Processing Systems 29, D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran
Associates, Inc., 2016, pp. 4565-4573.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30, 1. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Curran Associates, Inc., 2017, pp. 5998-6008.

[10] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural net-
works,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[11] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in Proceedings of the 23rd
National Conference on Artificial Intelligence - Volume 3, ser. AAAT’08.
AAALI Press, 2008, p. 1433-1438.

[12] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adverserial
inverse reinforcement learning,” in International Conference on Learn-
ing Representations, 2018.

[13] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), 2011, pp.
465-472.

[14] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics models,”
in Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, Eds., vol. 31. Curran Associates, Inc., 2018, pp. 4754-4765.

[15] D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy
evolution,” in Advances in Neural Information Processing Systems 31,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 2450-2462.

[16] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control:
Learning behaviors by latent imagination,” in International Conference
on Learning Representations, 2020.

[17] N. Baram, O. Anschel, 1. Caspi, and S. Mannor, “End-to-end dif-
ferentiable adversarial imitation learning,” in Proceedings of the 34th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70,
International Convention Centre, Sydney, Australia, 06-11 Aug 2017,
pp- 390-399.

[18] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229-256, 1992.

[19] A. Mnih and K. Gregor, “Neural variational inference and learning in
belief networks,” in Proceedings of the 31st International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
E. P. Xing and T. Jebara, Eds., vol. 32, no. 2. Bejing, China: PMLR,
22-24 Jun 2014, pp. 1791-1799.

[20] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your model:
Model-based policy optimization,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 12519-12530.

[21] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa,
“Learning continuous control policies by stochastic value gradients,”
in Advances in Neural Information Processing Systems 28, C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran
Associates, Inc., 2015, pp. 2944-2952.

[22] Y. W. T. Chris J. Maddison, Andriy Mnih, “The concrete distribution:
A continuous relaxation of discrete random variables,” in International
Conference on Learning Representations, 2017.

[23] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” 2017.

[24] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proceedings of the 32nd International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, F. Bach and D. Blei, Eds., vol. 37. Lille, France: PMLR,
07-09 Jul 2015, pp. 1889-1897.

[25] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA), May 2017, pp. 3389-3396.

[26] X. Chen, Z. Ye, J. Sun, Y. Fan, F. Hu, C. Wang, and C. Lu, “Transferable
active grasping and real embodied dataset,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 3611-3618.

[27] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra,
“Benchmarking reinforcement learning algorithms on real-world robots,”
in Proceedings of The 2nd Conference on Robot Learning, ser. Proceed-
ings of Machine Learning Research, A. Billard, A. Dragan, J. Peters,
and J. Morimoto, Eds., vol. 87. PMLR, 29-31 Oct 2018, pp. 561-591.



	Introduction
	Related Work
	Background
	Adversarial Inverse Reinforcement Learning (AIRL)
	MGAIL Algorithm

	Our Method
	Self-attention Dynamics Model
	Differentiable Entropy-regularized Discriminative Reward
	Policy Learning in MAIRL

	Experiments
	Training Details
	Discrete Control Tasks
	Policy Learning Performance in Imitation Learning
	Training and Evaluation on Real Robot Platform

	Conclusion
	References

