IERG4190/IEMS5707 Course Summary

Bolei Zhou

The Chinese University of Hong Kong

Format for the final exam

- One A4 paper (one-side) as cheat-sheet
- Multiple-choice questions and short-answer questions through Blackboard
- Length: 1 hour or 1.5 hours (To be determined)
- Online exam invigilation:
 - Find a smooth and stable Internet condition
 - Prepare one webcam. Keep your web-camera open through the ZOOM (you will be monitored by TAs and me).
 - Stay in Blackboard browser all the time, no web browsing or other communication. Your screen will be recorded, and video will be sent back for check

Three components of the course

- Multimedia coding
- Multimedia processing
- Multimedia understanding

Multimedia Coding and Processing

multimedia

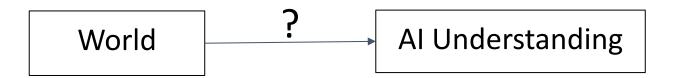
/ˈmʌltɪmiːdɪə/ ୶

adjective

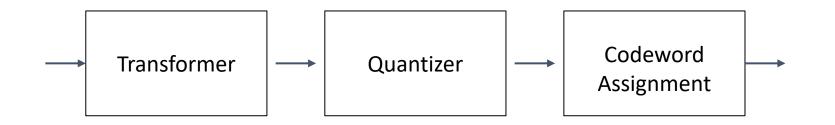
adjective: multimedia; adjective: multi-media

- (of art, education, etc.) using more than one medium of expression or communication.
 - (of computer applications) incorporating audio and video, especially interactively. "multimedia applications"

Modern Multimedia System



Multimedia Coding: Elements of a Multimedia Coder

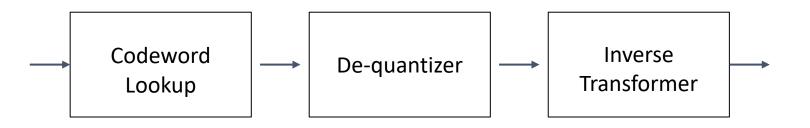


Transformer: transform the input data into a form more amenable to compression e.g. Discrete Fourier Transforms (DFT), Discrete Cosine Transform (DCT) etc. Quantizer: represent transformed signal with a limited number of levels/symbols; an irreversible operation; E.g. scalar quantization, vector quantization

Codeword Assignment:

Assign codewords to the quantized output, creating a bit stream e.g. fixed length coding v.s variable length coding

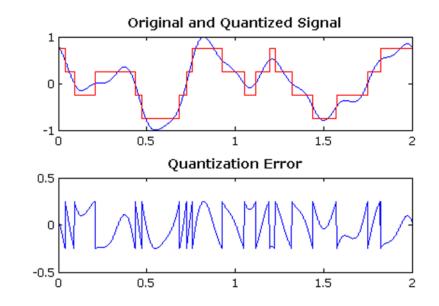
Multimedia Coding: Elements of a Multimedia Decoder



Codeword Lookup: Decodes bitstream into quantized levels **Dequantizer:** Reverse the quantization of quantizer **Inverse Transformer:** Reverse the transformation for display/playback

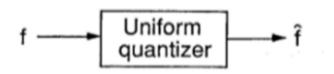
Scalar Quantization

To represent a continuous scalar value *f* with a finite number of bits, only a finite number of quantization levels *L* can be used. If each scalar is quantized independently, the procedure is called scalar quantization.



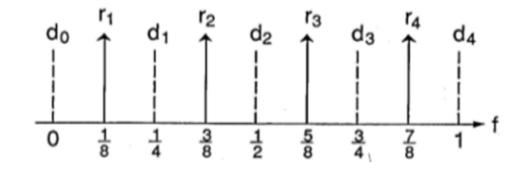
Uniform Quantization

Uniform quantization: equal spacing of reconstruction levels. Example: image intensity $f: 0 \sim 1$

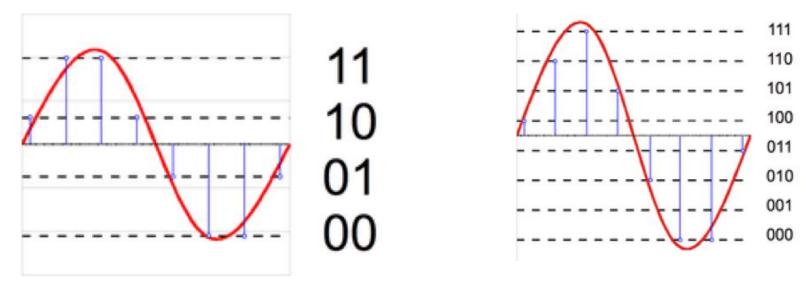


r_i : reconstruction levels d_i : decision bounaries

Number of reconstruction levels: 4



Relation between Bits and Levels



2-bit resolution with four levels

3-bit resolution with eight levels

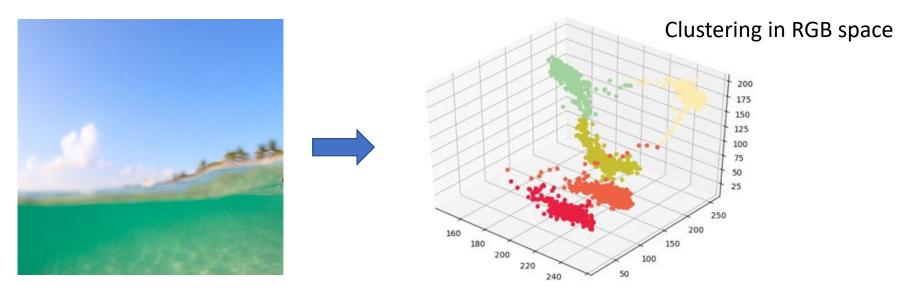
Vector Quantization for RGB Images

- Each pixel is thus represented by an RGB vector [r,g,b] usually already quantized individually to 256 levels ([0,255])
- How many bits?

The three RGB colors are each 8-bits (possible values [0.. 255], $2^8 = 256$)

Vector Quantization for RGB Images

- In Vector Quantization we call the set of reconstruction levels a codebook or dictionary and the space with each decision boundary a cell
- Using our intuition, the reconstruction levels could be the center (or more properly centroids) of these cells



Vector Quantization for RGB Images

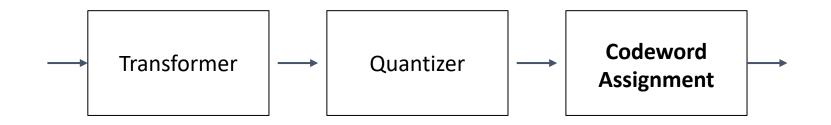
- K-means clustering (how it works?)
- Having K reconstruction levels means codebook of size K
 Need only log₂(K) bits per pixel to store/transmit

Original 8 x 3 bits

K = 24 VQ ~5 bits

K = 64 VQ 6 bits

Codeword Assignment



- We have seen some simple design choices we have for **quantization**
- We will now move on to **codeword assignment**
 - Fixed-length coding (FLC)
 - Variable-length coding (VLC)

Fixed-Length Coding

- We code a quantized symbol into bits of a certain length
- Least trouble: fixed length coding
 - 8 symbols (levels of quantization)

o 3	bits!
------------	-------

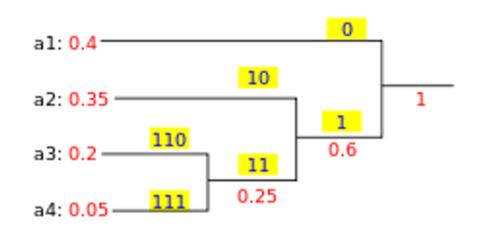
L = 8	3 bits
r ₀	000
r ₁	001
r ₂	010
r ₃	011
r ₄	100
r ₅	101
r ₆	110
r ₇	111

001	L010	101	0000	0011	1111	10
001 (010 2	101	000	001	111	110
r1	r2	r5	r0	r1	r7	r6

Variable-length Coding: Huffman Coding

Intuition: if we use more bits for more rare symbols and less bits for more frequent symbols, will we be using less bits, as a whole? e.g. use 1 bit for most frequent color, and many bits for less used color

How to do Huffman Coding: See lecture slide

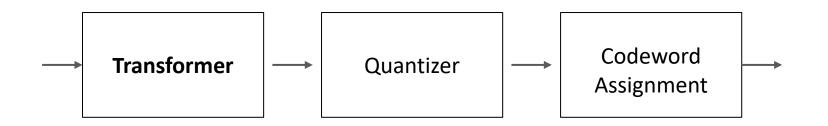


Symbol	Final Code
a1	0
a2	10
a3	110
a4	111

Variable-length Coding: Adaptive Dictionary Methods

• Make sure you understand how LZ77, LZ78, LZW work! (see examples in the Week2 slide), practice by yourself

Transformer



Transform coding: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

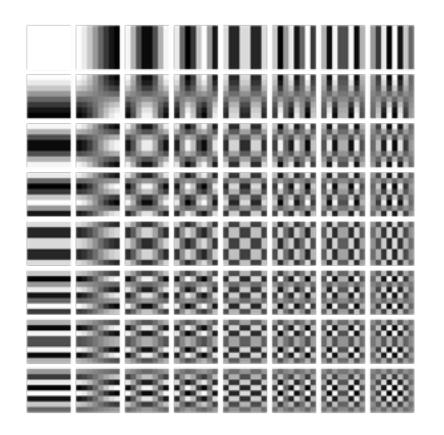
 Map signal from raw representation (e.g. pixels for images) to a set of linear transform coefficients

Success criteria

- Small number of transform coefficients should carry most signal energy
- \circ => lossy compression

DCT and Transform Coding

• 8x8 DCT Basis



6.1917	-0.3411	1.2418	0.1492	0.1583	0.2742	-0.0724	0.0561
0.2205	0.0214	0.4503	0.3947	-0.7846	-0.4391	0.1001	-0.2554
1.0423	0.2214	-1.0017	-0.2720	0.0789	-0.1952	0.2801	0.4713
-0.2340	-0.0392	-0.2617	-0.2866	0.6351	0.3501	-0.1433	0.3550
0.2750	0.0226	0.1229	0.2183	-0.2583	-0.0742	-0.2042	-0.5906
0.0653	0.0428	-0.4721	-0.2905	0.4745	0.2875	-0.0284	-0.1311
0.3169	0.0541	-0.1033	-0.0225	-0.0056	0.1017	-0.1650	-0.1500
-0.2970	-0.0627	0.1960	0.0644	-0.1136	-0.1031	0.1887	0.1444
	$\begin{array}{c} 0.2205\\ 1.0423\\ -0.2340\\ 0.2750\\ 0.0653\\ 0.3169\end{array}$	$\begin{array}{cccc} 0.2205 & 0.0214 \\ 1.0423 & 0.2214 \\ -0.2340 & -0.0392 \\ 0.2750 & 0.0226 \\ 0.0653 & 0.0428 \\ 0.3169 & 0.0541 \end{array}$	$\begin{array}{ccccccc} 0.2205 & 0.0214 & 0.4503 \\ 1.0423 & 0.2214 & -1.0017 \\ -0.2340 & -0.0392 & -0.2617 \\ 0.2750 & 0.0226 & 0.1229 \\ 0.0653 & 0.0428 & -0.4721 \\ 0.3169 & 0.0541 & -0.1033 \end{array}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

Original size, scaled 10x (nearest neighbor), scaled 10x (bilinear).

+	6.192 ×

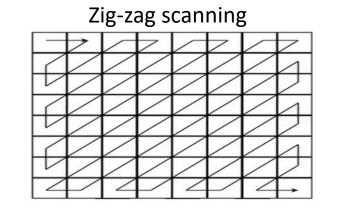
Source data 8x8 is transformed to a linear combination of these 64 frequency squares.

DCT and Transform Coding

- Not feasible to transform whole image so we divide into image blocks of 8 by 8 pixel or 16 by 16 pixel
- We seek to retain transform coefficients that are most significant to our image blocks
- Apart from cropping insignificant transform coefficients, we may wish to encode the amplitude of the transform more carefully
 - Zonal Coding
 - Threshold Coding

This is an example of DCT coefficient matrix:

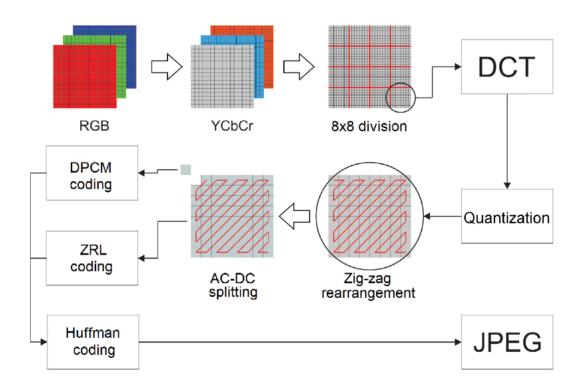
 $\begin{bmatrix} -415 & -33 & -58 & 35 & 58 & -51 & -15 & -12 \\ 5 & -34 & 49 & 18 & 27 & 1 & -5 & 3 \\ -46 & 14 & 80 & -35 & -50 & 19 & 7 & -18 \\ -53 & 21 & 34 & -20 & 2 & 34 & 36 & 12 \\ 9 & -2 & 9 & -5 & -32 & -15 & 45 & 37 \\ -8 & 15 & -16 & 7 & -8 & 11 & 4 & 7 \\ 19 & -28 & -2 & -26 & -2 & 7 & -44 & -21 \\ 18 & 25 & -12 & -44 & 35 & 48 & -37 & -3 \end{bmatrix}$



Output: 12W1B12W3B24W1B14W

JPEG

- Joint Photographic Experts Group
- First standard issued 1992
 - Free code library *libjpeg* released in 1991

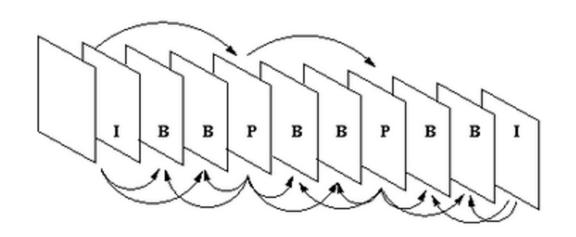


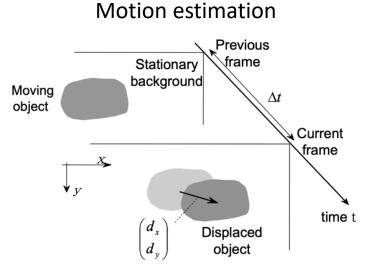
JPEG

Blocks clearly visible when JPEG quality is extremely low

Video Coding

- Extra dimension: Time with Temporal redundancy
- Motion Estimation
- Different frame types:
 - I-picture
 - P-picture
 - B-picture





Prediction for the luminance signal s[x, y, t] within the moving object:

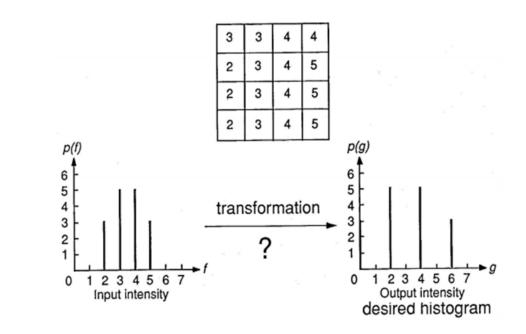
 $\hat{s}[x, y, t] = s'(x - d_x, y - d_y, t - \Delta t)$

Image Processing

Gamma Correction (point processing) Image as viewed on monitor Monitor 0.8 CRT LUMINOSITY OUTPUT GAMMA CORRECTION 0.6 Gamma correction Image as viewed on monitor CRT Monitor RESPONSE 0.2 0.2 0.4 0 0.6 0.8 1 CRT CONTROL VOLTAGE

Histogram Equalization

Histogram: number of pixels as a function of image intensity.



Color Spaces

• Transformation between RGB and YCbCr

The equivalent matrix manipulation is often referred to as the "color matrix":

$$egin{bmatrix} Y' \ P_B \ P_R \end{bmatrix} = egin{bmatrix} K_R & K_G & K_B \ -rac{1}{2} \cdot rac{K_R}{1-K_B} & -rac{1}{2} \cdot rac{K_G}{1-K_B} & rac{1}{2} \ rac{1}{2} & -rac{1}{2} \cdot rac{K_G}{1-K_R} & -rac{1}{2} \cdot rac{K_B}{1-K_R} \end{bmatrix} egin{bmatrix} R' \ G' \ B' \end{bmatrix}$$

And its inverse:

$$egin{bmatrix} R' \ G' \ B' \end{bmatrix} = egin{bmatrix} 1 & 0 & 2-2 \cdot K_R \ 1 & -rac{K_B}{K_G} \cdot (2-2 \cdot K_B) & -rac{K_R}{K_G} \cdot (2-2 \cdot K_R) \ 1 & 2-2 \cdot K_B & 0 \end{bmatrix} egin{bmatrix} Y' \ P_B \ P_R \end{bmatrix}$$

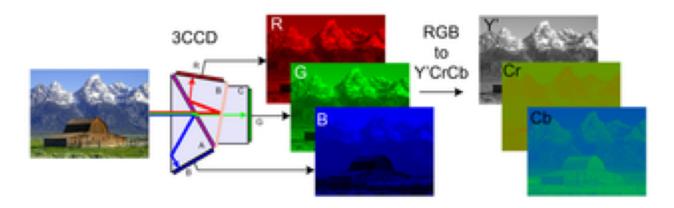
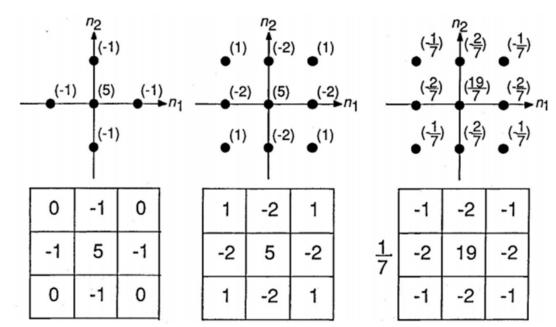
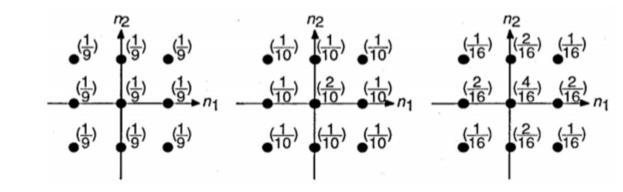


Image Filtering

Typical highpass filters used:



Typical lowpass filters used:

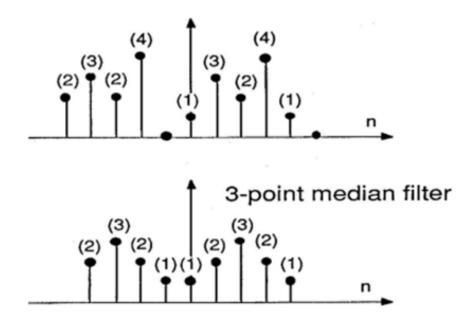


What is the visual output of the filtering?

Image Filtering

In a median filter, a window slides along the image, and the median intensity value of the pixels within the window becomes the output intensity of the pixel being processed.

Example: median [4, 0, 1] = 1



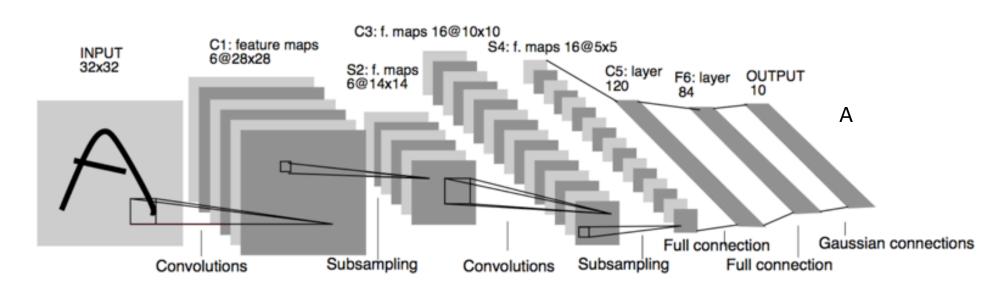
Applications of Image Filtering

- Edge detection: how it works? which filter to use?
- Denoising: which filter to use?

Introduction to Deep Learning

Convolutional Neural Networks

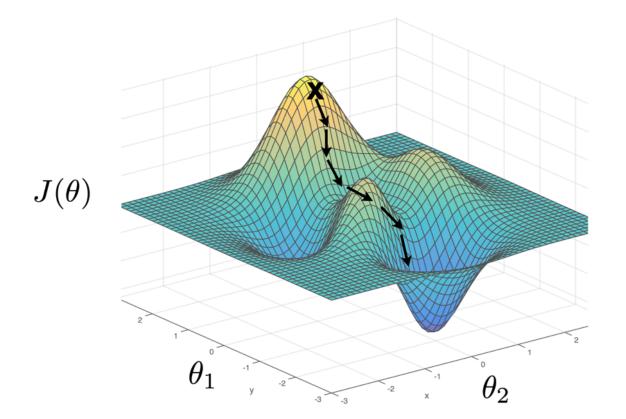
PROC. OF THE IEEE, NOVEMBER 1998



 $\overline{7}$

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Gradient Descend



$$egin{aligned} & heta^* = rgmin_{ heta} \sum_{i=1}^N \mathcal{L}(f_{ heta}(\mathbf{x}_i), \mathbf{y}_i) \ & \underbrace{ \mathcal{L}(f_{ heta}(\mathbf{x}_i), \mathbf{y}_i)} \ & \underbrace{ J(heta)} \end{aligned}$$

One iteration of gradient descent:

$$\theta^{t+1} = \theta^{t} - \eta_{t} \frac{\partial J(\theta)}{\partial \theta} \bigg|_{\theta = \theta^{t}}$$

Convolution Filters

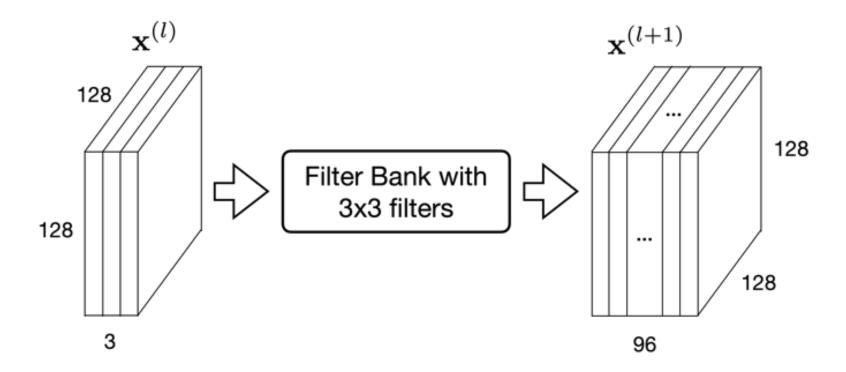
When mapping from

$$\mathbf{x}^{(l)} \in \mathbb{R}^{H \times W \times C^{(l)}} \to \mathbf{x}^{(l+1)} \in \mathbb{R}^{H \times W \times C^{(l+1)}}$$

using an filter of spatial extent $M \times N$

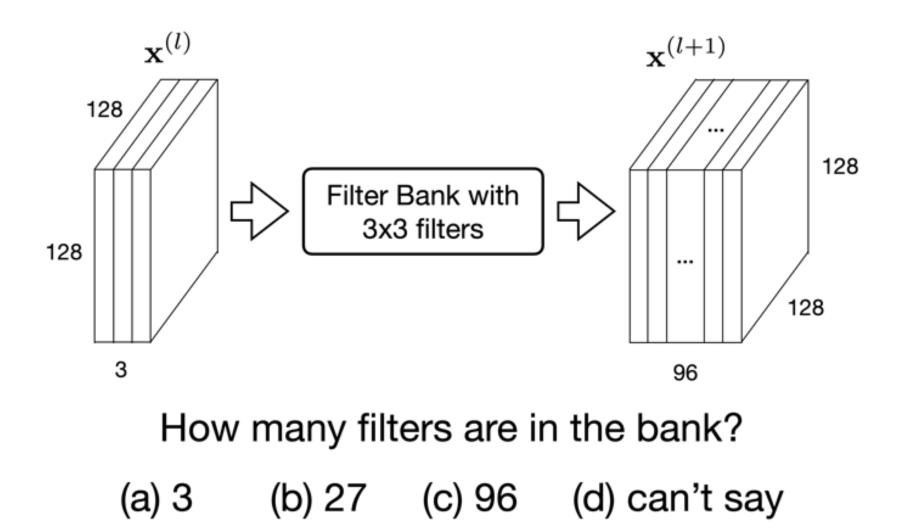
Number of parameters per filter: $M \times N \times C^{(l)}$ Number of filters: $C^{(l+1)}$

Convolution Filters



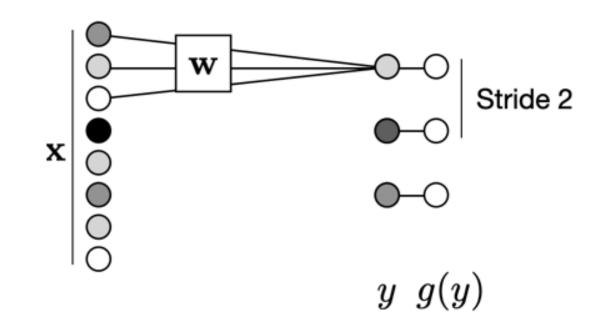
How many parameters does *each filter* have? (a) 9 (b) 27 (c) 96 (d) 864

Convolution Filters



Strided Operations

• Strided operations combine a given operation (convolution or pooling) and downsampling into a single operation.



Conv layer

Pooling Operations

Max pooling

$$z_k = \max_{j \in \mathcal{N}(j)} g(y_j)$$

Global average pooling: average each elements on a feature map into a scalar

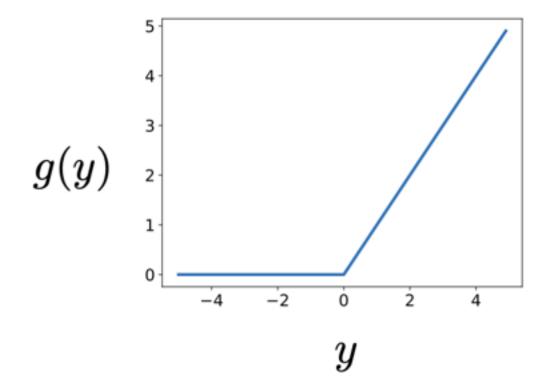
Mean pooling

$$z_k = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}(j)} g(y_j)$$

Nonlinear Operation: ReLU

Rectified linear unit (ReLU)

 $g(y) = \max(0, y)$



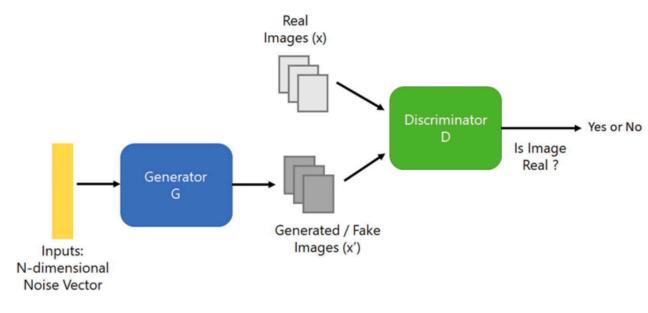
Programming examples

- There will be some programming examples
- Check Tutorial Session's slides

Generative Modeling

- Different generative models (see corresponding lecture slide)
 - Likelihood-based models: Autoregressive models, RNN, PixelCNN, PixelRNN, WaveNet
 - Latent variable models: Variational Autoencoder (VAE)
 - Implicit generative models: Generative Adversarial Networks (GANs)
- Their properties: Inference capability? Strengths and weaknesses? Diversity of the generated images

Generative Adversarial Networks



Training objective for discriminator:

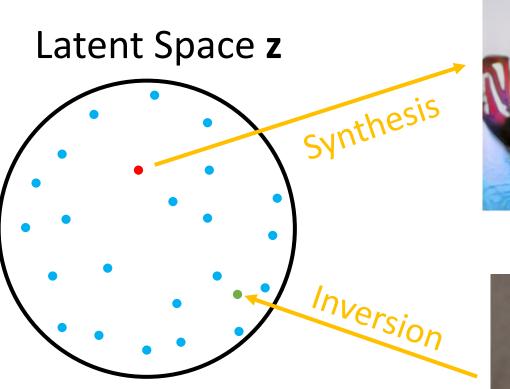
$$\max_{D} V(G, D) = E_{\mathbf{x} \sim p_{\text{data}}}[\log D(\mathbf{x})] + E_{\mathbf{x} \sim p_{G}}[\log(1 - D(\mathbf{x}))]$$

Training objective for generator:

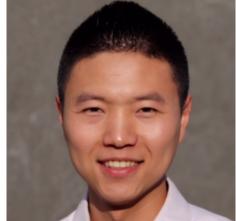
$$\min_{G} V(G, D) = E_{\mathbf{x} \sim p_{\text{data}}}[\log D(\mathbf{x})] + E_{\mathbf{x} \sim p_{G}}[\log(1 - D(\mathbf{x}))]$$

$$\min_{\theta} \max_{\phi} V(G_{\theta}, D_{\phi}) = E_{\mathbf{x} \sim p_{\text{data}}}[\log D_{\phi}(\mathbf{x})] + E_{\mathbf{z} \sim p(\mathbf{z})}[\log(1 - D_{\phi}(G_{\theta}(\mathbf{z})))]$$

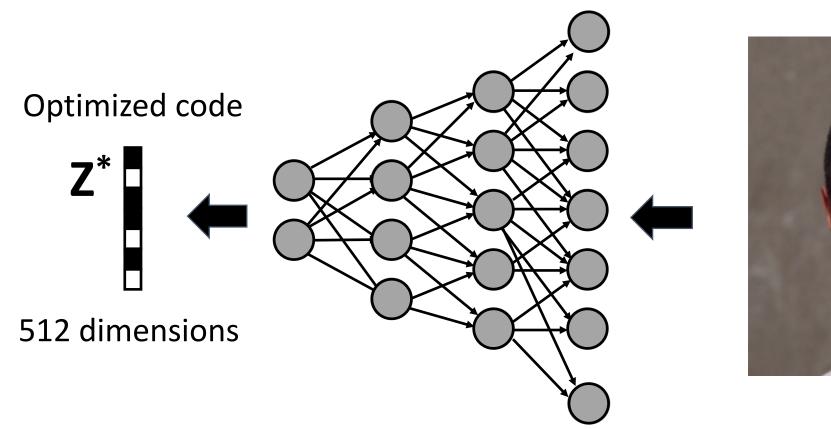
Inverse Problem in GANs: Inverting Real Face to Latent Code x = G(z)



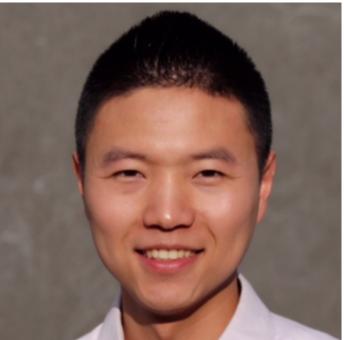
Real Image X



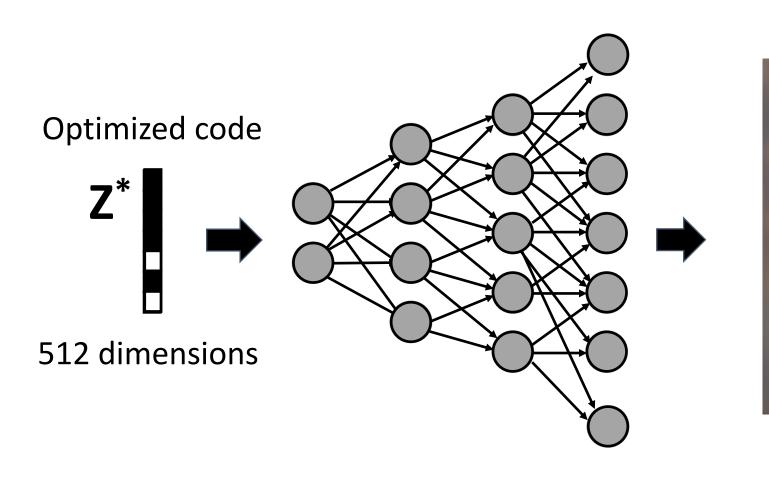
Inverse Problem in GANs: Inverting Real Face to Latent Code



Real face x



Inverse Problem in GANs: Inverting Real Face to Latent Code



Reconstructed face

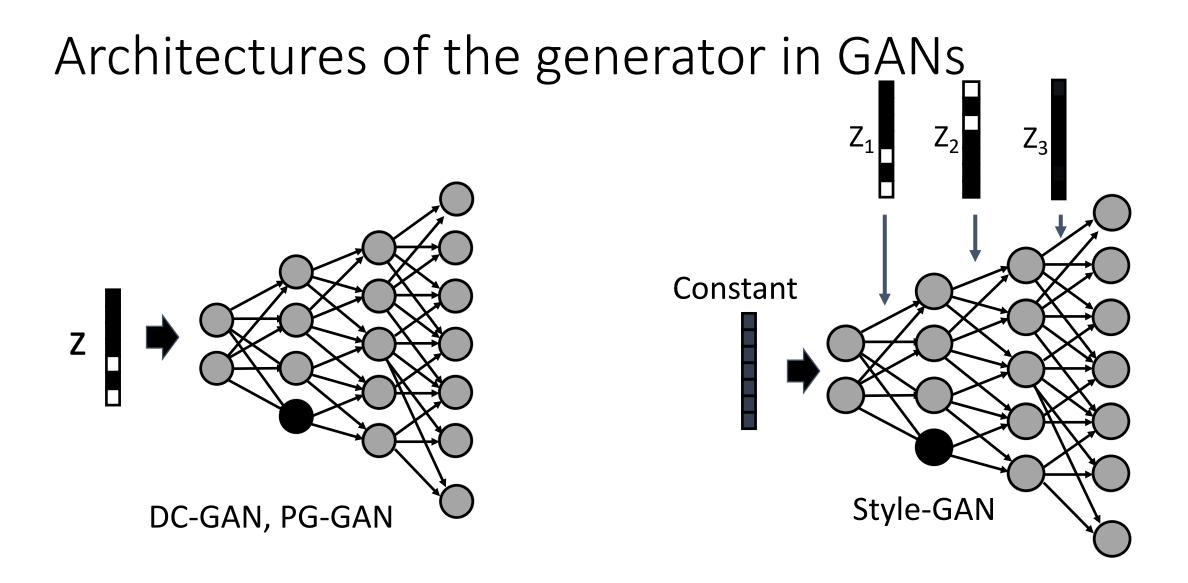
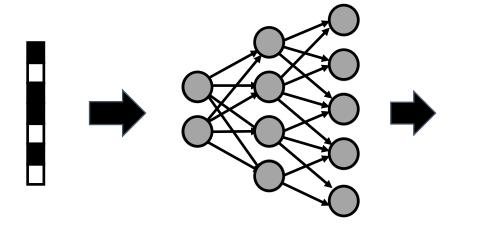
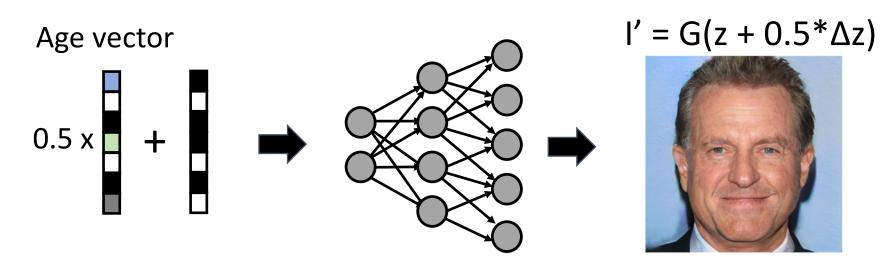


Image Manipulation through Pretrained GANs

I = G(z)





InterFaceGAN, Shen, Gu, Tang, Zhou, CVPR'20

Deep Generative Prior for Image Processing

To optimize latent code z such that the following objective function can be minimized:

$$L_{SR} = L(down(x^{inv}), I_{LR})$$
$$L_{inp} = L(x^{inv} \circ \mathbf{m}, I_{ori} \circ \mathbf{m})$$
$$L_{color} = L(gray(x^{inv}), I_{grag})$$

(b) Colorization

(e) Image inpainting

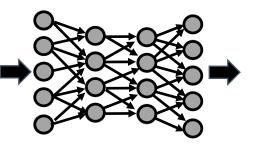
(c) Super-Resolution

(f) Semantic image manipulation

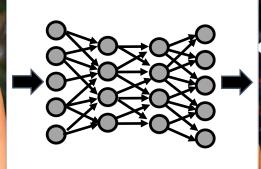
Jinjin Gu, Yujun Shen, Bolei Zhou. CVPR'20

Neural Image Processing

Super-resolution

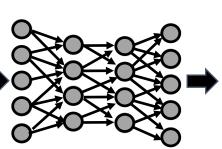


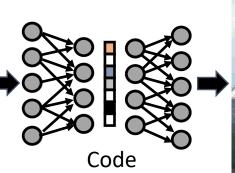
Style transfer



Colorization

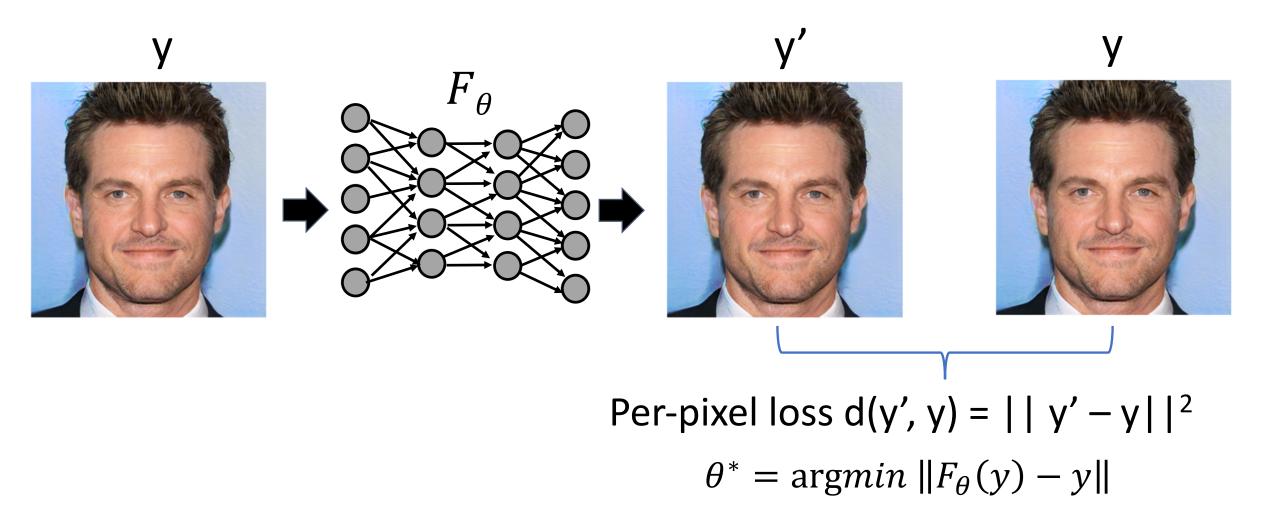
Image compression





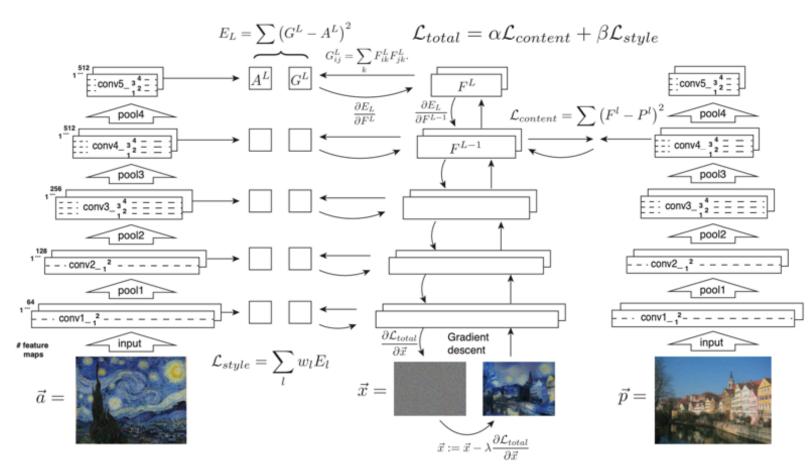


Reconstruction Loss d(y', y)

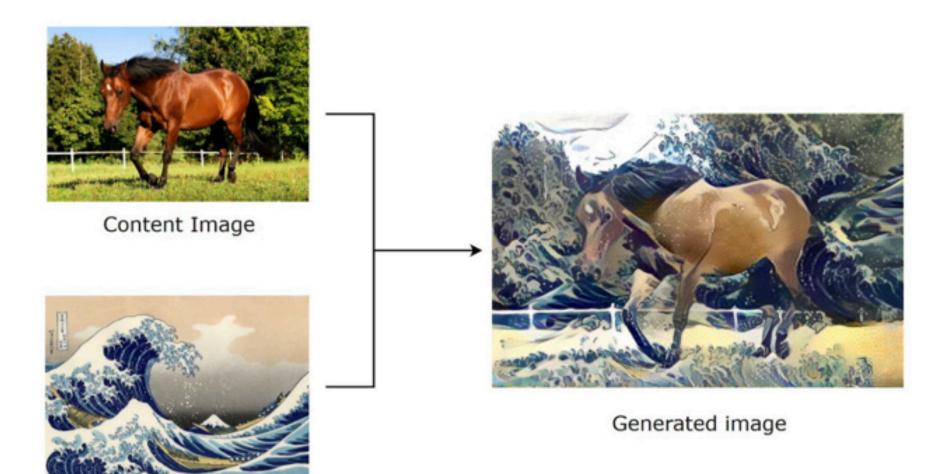


Loss Functions for Image Reconstruction

- Per-pixel loss: pixel difference
- Feature loss: pretrained network's intermediate features
- Style loss: Gram Matrix



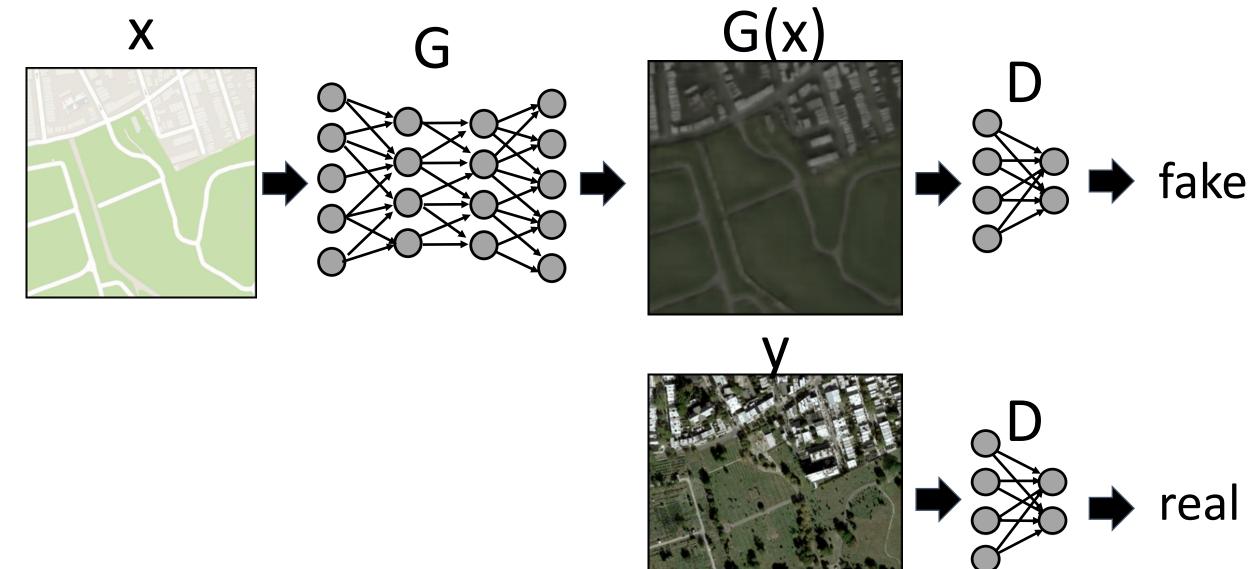
Neural Style Transfer



Style Image

Metrics to Evaluate Image Reconstruction

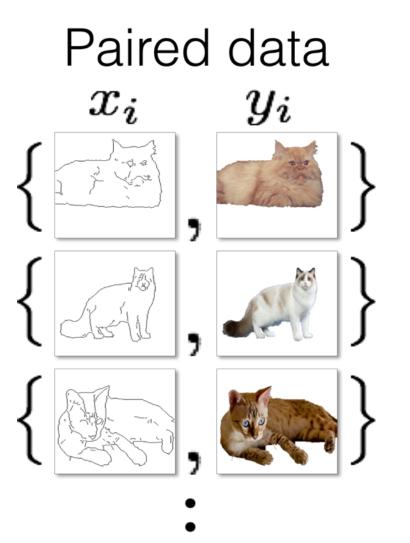
- Pairwise similarity:
 - PSNR
 - MS-SSIM
- Distribution similarity (commonly used in GANs):
 - FID

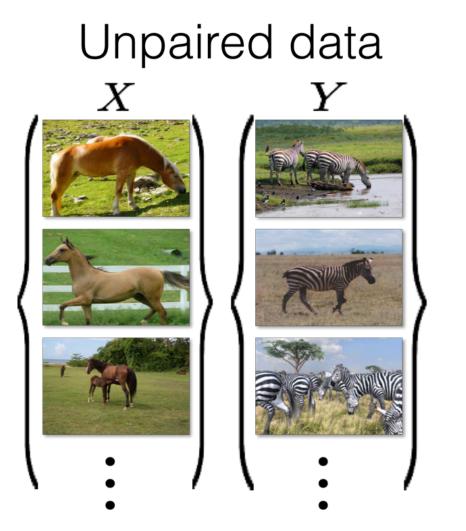


loss function:

 $\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$

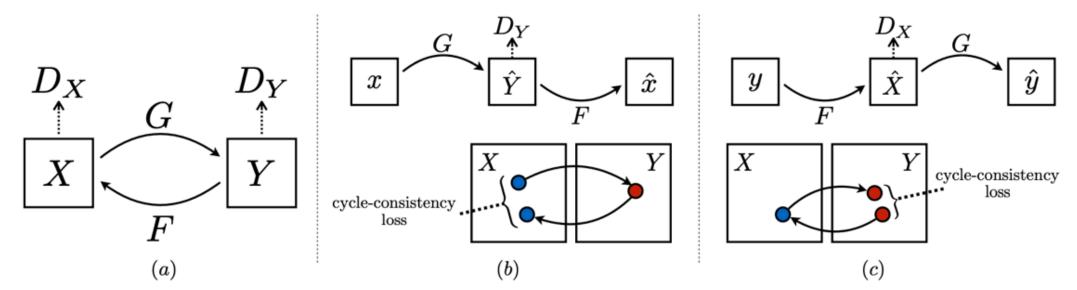
Cycle Consistency for Unpaired Data





slides from Phillip Isola

Cycle Consistency for Unpaired Data

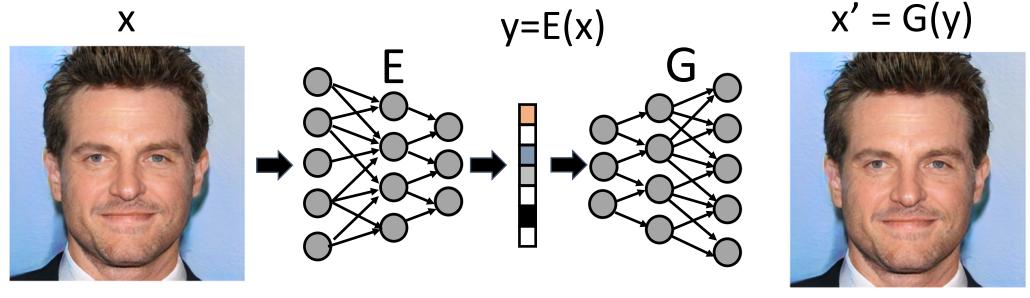


$$\begin{aligned} \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) &= \mathbb{E}_{y \sim p_{\text{data}}(y)} [\log D_Y(y)] \\ &+ \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log(1 - D_Y(G(x)))], \\ &\text{Our full objective is:} \end{aligned}$$

$$\begin{aligned} \mathcal{L}_{\text{cyc}}(G, F) &= \mathbb{E}_{x \sim p_{\text{data}}(x)} [\|F(G(x)) - x\|_1] \\ &+ \mathbb{E}_{y \sim p_{\text{data}}(y)} [\|G(F(y)) - y\|_1]. \end{aligned}$$

$$\begin{aligned} \mathcal{L}_{(G, F, D_X, D_Y)} &= \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) \\ &+ \mathcal{L}_{\text{GAN}}(F, D_X, Y, X) \\ &+ \lambda \mathcal{L}_{\text{cyc}}(G, F), \end{aligned}$$

Neural Image Compression with Adversarial Loss



Input

Reconstruction

Objective:

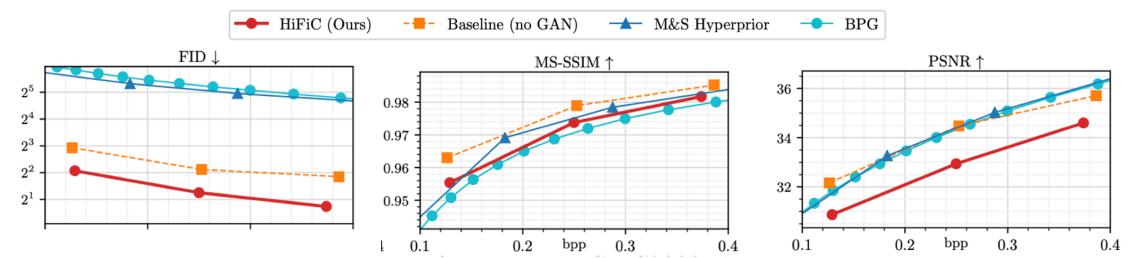
$$\mathcal{L}_{EGP} = \mathbb{E}_{x \sim p_X} [\lambda r(y) + d(x, x') - \beta \log(D(x', y))],$$
$$\mathcal{L}_D = \mathbb{E}_{x \sim p_X} [-\log(1 - D(x', y))] + \mathbb{E}_{x \sim p_X} [-\log(D(x, y))].$$

* P is the distribution of code y, then an entropy coding algorithm on y

Experiments of High-Fidelity Compression

- Training set: It consists of a large set of high-resolution images collected from the Internet
- Testing set:
 - Kodak [23] dataset (24 images),
 - CLIC2020 [46] testset (428 images)
 - DIV2K [2] validation set (100 images)

bpp: bit per pixel



Calculating bpp for an image

- Say we have a jpg image with 420x920, its size is 20635 bytes. What is the bpp in this image?
- We know 1 byte = 8 bits, bpp (bits per pixel) = 20635 * 8 bits / (420*920)
- Other knowledge about units:
 - 1 Mb = 1024 kb
 - 1 kb = 1024 bytes

Exam Coverage

- All the course slides, not limited to this summary slide
- Assignments 1-3
- Coding examples used in TA tutorial sessions
- Coding examples used in the course

Thank you!

- Hope this course will be useful for your future career!
- Let me know how you apply what you learn to your future projects!
- http://bzhou.ie.cuhk.edu.hk/