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Format for the final exam

* One A4 paper (one-side) as cheat-sheet

* Multiple-choice questions and short-answer questions through
Blackboard

* Length: 1 hour or 1.5 hours (To be determined)

* Online exam invigilation:
* Find a smooth and stable Internet condition

* Prepare one webcam. Keep your web-camera open through the ZOOM (you
will be monitored by TAs and me).

 Stay in Blackboard browser all the time, no web browsing or other
communication. Your screen will be recorded, and video will be sent back for
check



Three components of the course

* Multimedia coding
* Multimedia processing

* Multimedia understanding



Multimedia Coding and Processing

multimedia

/' mAltimi:dis/ €

adjective
adjective: multimedia; adjective: multi-media

1. (of art, education, etc.) using more than one medium of expression or
communication.

- (of computer applications) incorporating audio and video, especially interactively.

"multimedia applications”
o e G ;
1) '
=9 () Ml W P AR O

ANIMATION COMPUTER MUSIC VIDEO AUDIO E-MAIL STREAMING GAMING  INTERNET




Modern Multimedia System

World ' » Al Understanding
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MU

timedia Coding: Elements of a Multimedia

Coder
— Transformer |— Quantizer — Codeword |,
Assignment
Transformer: transform the input Quantizer: represent Codeword Assignment:
data into a form more amenable transformed signal with a Assign codewords to the
to compression limited number of quantized output, creating
e.g. Discrete Fourier Transforms levels/symbols; an a bit stream
(DFT), Discrete Cosine Transform irreversible operation; e.g. fixed length coding v.s
(DCT) etc. E.g. scalar quantization, variable length coding

vector quantization



Multimedia Coding: Elements of a Multimedia
Decoder

_ | Codeword : De-quantizer Inverse

Lookup Transformer

Codeword Lookup: Decodes bitstream into
guantized levels

Dequantizer: Reverse the quantization of quantizer
Inverse Transformer: Reverse the transformation
for display/playback



Scalar Quantization

To represent a continuous scalar
value f with a finite number of bits,
only a finite number of quantization
levels L can be used. If each scalar is
guantized independently, the
procedure is called scalar
guantization.

1

0

-1

0.5

0

-0.5
0

Original and Quantized Signal

0 0.5 1 1.5 2

Quantization Error

AN AL




Uniform Quantization

Uniform quantization: equal spacing of reconstruction levels.
Example: image intensity f: 0~1

I; - reconstruction levels
d; : decision bounaries
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Relation between Bits and Levels

2-bit resolution with four levels 3-bit resolution with eight levels



Vector Quantization for RGB Images

* Each pixel is thus represented by an RGB vector [r,g,b] usually
already quantized individually to 256 levels ([0,255])

* How many bits?
The three RGB colors are each 8-bits (possible

values [0.. 255], 28 = 256)

[110,165,247] —

[12,169,125]




Vector Quantization for RGB Images

* In Vector Quantization we call the set of reconstruction levels a
codebook or dictionary and the space with each decision boundary
a cell

* Using our intuition, the reconstruction levels could be the center (or
more properly centroids) of these cells

Clustering in RGB space




Vector Quantization for RGB Images

* K-means clustering (how it works?)

* Having K reconstruction levels means codebook of size K
o Need only log,(K) bits per pixel to store/transmit

Original K=24VQ K=64VQ
8 x 3 bits ~5 bits 6 bits




Codeword Assignment

. Codeword
—  Transformer — Quantizer — —

Assignment

* We have seen some simple design choices we have
for quantization

* We will now move on to codeword assignment
* Fixed-length coding (FLC)
e Variable-length coding (VLC)



Fixed-Length Coding

® We code a quantized symbol into bits of a certain length

® least trouble: fixed length coding
o 8 symbols (levels of quantization)

o 3 bits!
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Variable-length Coding: Huffman Coding

Intuition: if we use more bits for more rare symbols and less bits
for more frequent symbols, will we be using less bits, as a whole?
e.g. use 1 bit for most frequent color, and many bits for less used color

How to do Huffman Coding: See lecture slide
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Variable-length Coding: Adaptive Dictionary
Methods

* Make sure you understand how LZ77, LZ78, LZW work! (see examples
in the Week?2 slide), practice by yourself



Transformer

: Codeword :
Assignment

—  Transformer — Quantizer

Transform coding: Discrete Fourier Transform (DFT) and Discrete

Cosine Transform (DCT)
o Map signal from raw representation (e.g. pixels for images) to a set of
linear transform coefficients
Success criteria
o Small number of transform coefficients should carry most signal
energy
o =>|ossy compression



DCT and Transtorm Coding

 8x&8 DCT Basis

[ 6.1917 —0.3411 1.2418  0.1492  0.1583  0.2742 —0.0724 0.0561 |
0.2205  0.0214  0.4503  0.3947 —0.7846 —0.4391 0.1001 —0.2554
1.0423  0.2214 —-1.0017 —-0.2720 0.0789 —0.1952 0.2801  0.4713
—0.2340 —-0.0392 —-0.2617 —0.2866 0.6351  0.3501 —0.1433 0.3550
0.2750  0.0226  0.1229  0.2183 —0.2583 —0.0742 —0.2042 —0.5906
0.0653  0.0428 —0.4721 -0.2905 0.4745  0.2875 —0.0284 —0.1311
0.3169  0.0541 —0.1033 —0.0225 —-0.0056 0.1017 —0.1650 —0.1500

| —0.2970 —0.0627 0.1960  0.0644 —0.1136 —0.1031 0.1887  0.1444 |

DCT of the image =

8x8

- . + n. 192
Original size, scaled 10x (nearest

neighbor), scaled 10x (bilinear). _
Source data 8x8 is transformed to a

linear combination of these 64
frequency squares.




DCT and Transtorm Coding

* Not feasible to transform whole image so we divide into image
blocks of 8 by 8 pixel or 16 by 16 pixel

* We seek to retain transform coefficients that are most significant to
our image blocks
* Apart from cropping insignificant transform coefficients, we may

wish to encode the amplitude of the transform more carefully

e Zonal Coding
* Threshold Coding

This is an example of DCT coefficient matrix:

[—415 —-33 —-58 35
5 —-34 49 18

-53 21 34 20
-8 15 16 7

19 -28 -2 -26
| 18 25 12 —44

—46 14 8 35 -—-50 19 7 —18

9 -2 9 -5 =32 —-15 45 37

58 —51 —15 —12]
27 1 -5 3

2 34 36 12

-8 11 4 7
-2 7T —44 21

Zig-zag scanning

35 48 -37 -3

* Example:

WWWWWWWWWWWWBWWWWWWWWWW
wwBBBWWWWWWWWWWWWWWWWWWW
WWWWWBWWWWWWWWWWWWWW

Output: 12W1B12W3B24W1B14W



JPEG

® Joint Photographic Experts Group

® First standard issued 1992
o Free code library libjpeg released in 1991
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JPEG

Blocks clearly visible when JPEG quality is extremely low

JPEG compression Original




Video Coding

* Extra dimension: Time with Temporal redundancy
* Motion Estimation
* Different frame types:

|-picture
P-picture
B-picture

NERREERRY

Motion estimation

\. . Previous
Stationary rame

Moving background

object
Current
MY

’ time t
x Displaced
(dyj object
Prediction for the luminance signal s[x,y,¢] within the moving object:
S[x, y,t] =s'(x—dx,y—dy,t—At)‘




Image Processing

Gamma Correction (point processing) Histogram Equalization
A
m Histogram: number of pixels as a function of image intensity.
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Color Spaces

* Transformation between RGB and YCbCr

The equivalent matrix manipulation is often referred to as the "color matrix":

Y’ KR KG KB RI
1 Kpg 1 K¢ 1
PB —_— _E ’ 1-Kp _5 ’ 1-Kp 5 GI
Pg 1 1. K 1 Ks || B
2 2 1-Kp 2 1-Kp

And its inverse:

R 1 0 2_2'KR Y’
K K
ol =11 —K—g-(2—2-KB) —%-(2—2'}'(12) Pp

B’ 1 2-2.Kp 0




Image Filtering

Typical highpass filters used: Typical lowpass filters used:

n2 n2 n
1('1) 0(1) 1('2) 0(1) o(%) I( %—) o(%) m no n2

NE e e B IR& R & by & G5 M &
QY Wl o K B I (RN i G & D n & lie & "

& 1§ @ §o e Go &6 & &9

0|-1]| 0 1]-2] 1 1] -2 -1

1| 5] -1 2| 5] -2 ;_ 2| 19| -2

0|-1]0 1] -2 1 1] 2| -1

What is the visual output of the filtering?



Image Filtering

In a median filter, a window slides along the image, and the median
intensity value of the pixels within the window becomes the output
intensity of the pixel being processed.

Example: median [4, 0, 1] =1

(4) (4)
(3) (3)
2) % (2) (2)
T T (1) T (1)
. ® T T - s

3-point median filter
(3) (3)

2) T (2 2 ¢ (@
PlTeetle ..




Applications of Image Filtering

* Edge detection: how it works? which filter to use?
* Denoising: which filter to use?



Introduction to Deep Learning

e Convolutional Neural Networks

PROC. OF THE IEEE, NOVEMBER 1998

C3:f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28 Cs: layer
. F6: layer OUTPUT

|
Full mn&cﬁon ’ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.



Gradient Descend

N
9* — argel’ninZL(fO(xi)a Y’l,)
1=1

— —
——

J(0)

One iteration of gradient descent:

0J(0)
90 |g—p:

9t+1 — Ht —

learning rate



Convolution Filters

When mapping from

xO c [RHxWxC(’) — x(+D c RHxWxC(’“)

using an filter of spatial extent M X N

Number of parameters per filter: M X N X C?

Number of filters: CU+1)



Convolution Filters

MO

128

E{> Filter Bank with
3x3 filters

128

Jo>

3

(1)

128

/128

96

How many parameters does each filter have?
(@9 (b) 27 (c) 96

(d) 864



Convolution Filters

128

N

128

Filter Bank with
3x3 filters

N

L (1+1)

128

128

96

How many filters are in the bank?
(@) 3 (b) 27 (c) 96

(d) can’t say



Strided Operations

* Strided operations combine a given operation (convolution or
pooling) and downsampling into a single operation.

Conv layer

O—

O— W —==0-0

O— Stride 2
% | @O

O

O O

O

O

y 9(y)



Pooling Operations

Max pooling
<L — ImMax Jgl\y
JEN(7) (w;)

Mean pooling

Global average pooling:
average each elements on
a feature map into a scalar



Nonlinear Operation: RelLU

Rectified linear unit (RelLU)

g9(y) = max(0,y)




Programming examples

* There will be some programming examples
* Check Tutorial Session’s slides



Generative Modeling

* Different generative models (see corresponding lecture slide)

* Likelihood-based models: Autoregressive models, RNN, PixelCNN, PixelRNN,
WaveNet

» Latent variable models: Variational Autoencoder (VAE)
* Implicit generative models: Generative Adversarial Networks (GANs)

* Their properties: Inference capability? Strengths and weaknesses?
Diversity of the generated images



Generative Adversarial Networks

Training objective for discriminator:

Real

Images (x) mgx V(G’ D) = EXNPdata [Iog D(X)] + EXNPG [Iog(l - D(X))]

vesorno  Training objective for generator:
Is Image )
ﬁ e min V(G, D) = Exxpay.a[l08 D(X)] + Exvpe[log(1 — D(x))]
G

Generated / Fake
Inputs: Images (x')
N-dimensional
Noise Vector

mein mQ?X V(G97 D¢) — Eprdata [Iog D¢(X)] + EZNP(Z)[log(l - D¢(G9(Z)))]



Inverse Problem in GANs: Inverting Real Face
to Latent Code x = G(7)

Latent Space z




Inverse Problem in GANs: Inverting Real Face
to Latent Code

Real face x

Optimized code
Z' E

512 dimensions




Inverse Problem in GANs: Inverting Real Face
to Latent Code

Reconstructed face

Optimized code
z" !

512 dimensions




DC-GAN, PG-GAN




Image Manipulation through Pretrained GANs

Age vector

O.5x! + E »
n

InterFaceGAN, Shen, Gu, Tang, Zhou, CVPR’20




Deep Generative Prior for Image Processing

To optimize latent code z such that the following objective
function can be minimized:

T R T <(f[()”l on (Ll}‘ 1INV ) [LR>

L‘ Z"n}-) — L(I (XEXY; o m ](_)” o m)

L’(_if(_‘)[(_‘)‘r — L ((/ ra l/(l ’?" ”l}) ) ] gra ,U) I {

(¢) Image inpainting (f) Semantic image manipulation

Jinjin Gu, Yujun Shen, Bolei Zhou. CVPR’20



Neural Image Processing

Super-resolution




Reconstruction Loss d(y/, )

Per-pixel loss d(y’, y) = || y' —vy| |?

0" = argmin ||Fg(y) — y||



Loss Functions for Image Reconstruction

* Per-pixel loss: pixel
difference

* Feature loss:

pretrained network’s
intermediate features

e Style loss: Gram Matrix

Ey = Z (("I' - 4‘1")- L:total - ”E(,-()ntrﬁnt + .‘3£.~;t_1/1(>

P (.',"', Z I""; I"‘,';.

OE
L-1

k
IE,




Neural Style Transfer

Generated image

Style Image



Metrics to Evaluate Image Reconstruction

* Pairwise similarity:
* PSNR
* MS-SSIM

* Distribution similarity (commonly used in GANs):
* FID



loss function:

minmax Exy| log D(G(x)) + log(1—D(y)) |




Cycle Consistency for Unpaired Data

Paired data Unpaired data
£Lg Yi

slides from Phillip Isola



| G A G
/\ - - - /\ -
Dx Dy |z VN A 8] Y A% 9
i G P F F
X C Y X Y X i Y c:ycle-C(l)nsistency
F cycle—c?;iistency | e \ o /"' .\S.
(a) | (b) | (c)

EGAN(Ga DY) X? Y) — ]Eprdata(y) [log DY (y)]
+ ]Eccrvpdata(:c) [10g(]. - DY(G(CU))]"
Our full objective is:
[«cyc(Ga F) — ]Ea:diata(:c)[”F(G(m)) - $||1] L(G,F,Dx,Dy) =Lean(G, Dy, X,Y)

+ ]Ey"’pdata(y) [”G(F(?J)) - ?J||1]- + Loan(F, Dx,Y, X)
+ Moy (G, F),


https://arxiv.org/pdf/1703.10593.pdf

Neural Image Compression with Adversarial Loss

Input Reconstruction
['EGP — Emfvpx P‘T(y) + d(xa 16,) o ﬁlog(D(xla y))]a
Lp =Ezpy[—log(l— D(z',y))] + Eznpx [—log(D(z,y))]-

* P is the distribution of code y, then an entropy coding algorithm on y

Objective:



Experiments of High-Fidelity Compression

* Training set: It consists of a large set of high-resolution images
collected from the Internet

* Testing set:
» Kodak [23] dataset (24 images),
e CLIC2020 [46] testset (428 images)

» DIV2K [2] validation set (100 images) bpp: bit per pixel

—&— HiFiC (Ours) Baseline (no GAN) —&— M&S Hyperprior  —®— BPG
FID § MS-SSIM 1
2 0.98 - ——
24 3 -
~—&

0.97 1

0.96 -

0.95 -

vvvvvvvvvvvvvv



Calculating bpp for an image

e Say we have a jpg image with 420x920, its size is 20635 bytes. What is
the bpp in this image?

* We know 1 byte = 8 bits, bpp (bits per pixel) = 20635 * 8 bits /
(420*920)

* Other knowledge about units:

« 1 Mb=1024 kb
* 1 kb =1024 bytes



Exam Coverage

* All the course slides, not limited to this summary slide
* Assignments 1-3
* Coding examples used in TA tutorial sessions

* Coding examples used in the course



Thank youl!

* Hope this course will be useful for your future career!

* Let me know how you apply what you learn to your future projects!
 http://bzhou.ie.cuhk.edu.hk/



http://bzhou.ie.cuhk.edu.hk/

