
IERG4190 / IEMS5707
Multimedia Coding and
Processing

Chapter 2: Multimedia Coding Basics

Bolei Zhou
Department of Information Engineering, CUHK
Spring 2021
Part of the materials courtesy of Dr William Hui, Prof Tang Xiaoou, Prof. Liu JianZhuang. All images from Internet belong to respective owners.

Announcement

● Assignment 1 will be out this week on

Blackboard

● TA Office Hour: Wed 6:00 pm – 7:00 pm

● TA Tutorial: Wed 6:00 pm – 6:45 pm (Week

3 – Week 10). It continues to be Office Hour

after the tutorial. ZOOM link is in the Google

Doc

Outline

1. Some Basics

2. Redundancy

3. Elements of a Multimedia Coding System

4. Scalar Quantization

5. Vector Quantization

6. Dithering

7. Huffman Coding

8. Multi-Symbol Coding with Static Dictionaries

Basic Terminology

● Pixels (of an image, we will investigate in

more details later)

● Frames (of a video)

● Encode v.s. Decode

● Compress v.s. Decompress/Reconstruct

2D Signals

A 2D signal is just 2D. No need to be scared.

z = cos(x+y)

E.g. amplitude of the signal
may denote any channel
(R,G,B) of a color image

2D Signals

Multimedia Coding

● We want to store and transmit videos,

images and sound efficiently

● So rather than storing or transmitting them in

its naive representation, we want to

compress/decompress them

● How? Redundancy
● Redundancy comes in many forms

Statistical Redundancy

● For an image, neighboring pixels are usually

similar (spatial redundancy)

● For a video, successive frames are usually

similar (temporal redundancy)

Semantic Redundancy

Psychovisual or -acoustical Redundancy

● Our perception is not omnipotent and not

perfect

● We may not notice some color differences,

or may not hear some part of a tone - in

such cases part of our signal could be

redundant

Unconvinced? Try the Color Challenge:

https://www.xrite.com/hue-test

Let's Have an Experiment!

Appliance Specific Redundancy

● Our appliance itself has limited capability
○ E.g. for sound, your speaker

"Look how

colorful it is!!"

Lossless v.s. Lossy Compression

● Lossless compression: can only rely on

reducing statistical redundancy

● Lossy compression: exploit psychovisual

or psychoacoustical redundancy
○ Irreversible mapping
○ Exact reconstruction not possible

Elements of a Multimedia Coder

Transformer Quantizer Codeword
Assignment

Transformer: transform the input data into a

form more amenable to compression

e.g. Discrete Fourier Transforms (DFT),

Discrete Cosine Transform (DCT) etc.

Elements of a Multimedia Coder

Transformer Quantizer Codeword
Assignment

Quantizer: represent transformed signal with a

limited number of levels/symbols; an

irreversible operation;

E.g. scalar quantization, vector quantization

Elements of a Multimedia Coder

Transformer Quantizer Codeword
Assignment

Codeword Assignment: Assign codewords to

the quantized output, creating a bit stream

e.g. fixed length coding v.s variable length

coding

Elements of a Multimedia Decoder

Codeword
Lookup

De-quantizer Inverse
Transformer

Codeword Lookup: Decodes bitstream into

quantized levels

Dequantizer: Reverse the quantization of

quantizer

Inverse Transformer: Reverse the

transformation for display/playback

Different Encoding/Decoding Methods

● Choices of transformer, quantizer and

encoder (and their reconstruction

equivalents) result in different multimedia

coding methods

● Human psychovisual data used in standards

like JPEG, MPEGs and H.26x

Scalar Quantization

To represent a continuous
scalar value f with a finite
number of bits, only a
finite number of
quantization levels L can
be used. If each scalar is
quantized independently,
the procedure is called
scalar quantization.

Uniform Quantization

Uniform Quantization

Bits and levels

2-bit resolution with four levels 3-bit resolution with eight levels

Non-Uniform Quantization

Non-Uniform Quantization

Non-Uniform Quantization

Non-Uniform Quantization

can be solved
recursively,
given proper
initial values

Non-Uniform Quantization

Non-Uniform Quantization

Uniform quantization for
Example 2

Non-uniform quantization for
Example 2

Non-Uniform Quantization

● Input signal follows Gaussian distribution

Cumulative distribution

Vector Quantization

● Sometimes scalar quantization is too limited

● For instance, a pixel of an image may have 3

channels (red, green, blue)

[110,165,247]

[12,169,125]

Just In Case...

● Modern images are usually

composed of three color

channels: Red, Green and Blue

● Each pixel is thus represented

by an RGB vector [r,g,b] usually

already quantized individually to

256 levels ([0,255])

● How many bits?

The three RGB colors are each 8-bits
(possible values [0.. 255], 28 = 256)

Vector Quantization
● Instead of quantizing each scalar value

(red,green,blue intensities) separately, we want
to quantize the combined color (a vector)

Some finite levels
of blues for the sky

Some finite levels of
aqua color for the
water

Vector Quantization

● Similar to scalar quantization, we need to

have decision boundaries and reconstruction

levels - but they will also now be vectors in

the RGB space

● How to set them automatically?
○ Very similar to the non-uniform scalar quantization

we have seen just now

Vector Quantization
● In Vector Quantization we call the set of

reconstruction levels a codebook or

dictionary and the space with each decision

boundary a cell
● Using our intuition, the reconstruction levels

could be the center (or more properly

centroids) of these cells

Pipeline of Vector Quantization

K-Means Clustering

cell

K-Means Clustering

K-Means Clustering

K-Means Clustering

Interactive Demonstration

http://user.ceng.metu.edu.tr/~akifakkus/courses

/ceng574/k-means/

http://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/

K-Means Clustering

● Having K reconstruction levels means

codebook of size K
○ Need only log2(K) bits per pixel to store/transmit

K = 24 VQ
~5 bits

K = 64 VQ
6 bits

Original
8 x 3 bits

K-Means Clustering

● Most used in indexed color coding

● Supported in BMP, PCX, GIF and an option

in PNG

K = 24 VQ
~5 bits

K = 64 VQ
6 bits

Original
8 x 3 bits

Vector v.s. Scalar Quantization

● Clearly VQ is computationally more intensive
○ Requires training data
○ Clustering takes time (for transmitter only)
○ Receiver only needs to look up codebook

● As a trade-off, it offers potentially much

better performance than scalar quantization
○ In previous example, scalar quantization could afford

only 2-bits per color channel if we intend to keep the
quantization output the same size

A simulated non-uniform
scalar quantization result,
2 bits per color channel

Can We Improve Scalar Quantization?
● Sometimes scalar quantization is needed

○ Hardware limitation etc.
● Can be considered a pulse-code modulation (PCM) problem (and have

been under research long ago)

The signal-dependent
noise can be periodic and
very distracting to the
human observer - not
desirable

Adding Pseudo Noise

Adding Pseudo Noise

Adding Pseudo Noise

● Original paper:

http://www.packet.cc/files/pic-code-

noise.html

● Gives you a perspective of researchers

trying to solve multimedia problems long

before use of computers

http://www.packet.cc/files/pic-code-noise.html

Dithering
● An well-designed applied noise to randomize

quantization error
● In this extreme example we only have 2 quantization

levels - black and white
○ "Threshold" is generic scalar quantization and

"Random" is adding pseudo noise
○ Both not particularly acceptable

Effect of Color Banding

Effect of Color Banding

Dithering

● Concept of error diffusion
○ Quantization residual is distributed to neighboring

pixels that have not yet been processed
○ Invented for fax machines and black-and-white

copiers where very coarse quantization is a must

How Dithering works

Error diffusion: push the residual quantization

error of a pixel onto its neighboring pixels

Convolution kernel

https://en.wikipedia.org/wiki/Floyd%E2%80%93Steinberg_dithering

https://en.wikipedia.org/wiki/Floyd%E2%80%93Steinberg_dithering

Dithering in Modern Times

● A cool video game with dithering effect
○ https://dukope.itch.io/return-of-the-obra-dinn

https://dukope.itch.io/return-of-the-obra-dinn

Codeword Assignment

● We have seen some simple design choices

we have for quantization
● We will now move on to codeword

assignment
○ Fixed-length coding (FLC)
○ Variable-length coding (VLC)

Transformer Quantizer Codeword
Assignment

Fixed-Length Coding

● We code a quantized symbol

into bits of a certain length

● Least trouble: fixed length

coding
○ 8 symbols (levels of quantization)
○ 3 bits!

001010101000001111110

001 010 101 000 001 111 110

r1 r2 r5 r0 r1 r7 r6

Variable-Length Coding

● We code a quantized symbol into bits of a

certain length

● Least trouble: check the total number of

symbols and determine a code length
○ e.g. 64 symbols -> 6 bits minimum

● Can we use less bits?
○ Intuition: if we use more bits for more rare symbols

and less bits for more frequent symbols, will we be
using less bits, as a whole?

○ e.g. use 1 bit for most frequent color, and many bits
for less used color

Uniquely Decodable

● To use variable-length coding we need to

make sure code is uniquely decodable
○ Codeword are assumed to be received sequentially

on the receiver side

r2 or two r0?

Entropy

From Information Theory, the entropy of a

discrete random variable X with possible values

{x1,...,xn} and probability mass function P(X) is

written as:

Here I is called the information content of X

Entropy

What is the entropy in the above 2 cases?

?

?

Entropy

First case is trivial (a zero in both terms)

Second case:

Entropy

The more "uncertainty" a message resolves, the more
information it contains.

Entropy

Plotted results for different coin probabilities: A

binary entropy function

Does it fit
your
intuition?

Entropy and Coding

Huffman Coding

● A simple optimal prefix code
○ Prefix code means no valid code word is a prefix of

any other valid code word
○ This implies code word can be uniquely decoded in

our case
○ Let's look at an example

Huffman Coding

● Step 1: Create a binary tree of nodes for

each symbol
○ Start with the least probable, combine the lowest

probability pair to form a new node
○ the new node has a probability equal to sum of the

probability of its children

Source: en.wikipedia.org

Huffman Coding

● Step 2: After tree is complete (with root

node), start assigning code word from the

right
○ Give 0 to top/left child and 1 to bottom/right child
○ Go along the tree, increase code length by 1 each

time

Huffman Coding

● Step 3: Final Huffman Code would be the

code assigned to each leaf node
○ Note that they are all unique decodable
○ The rarest symbols would have the longest code

words
Symbol Final Code

a1 0

a2 10

a3 110

a4 111

Huffman Coding

● Near optimal coding
○ In the above example: 1.85

bits/symbol versus 1.74
bits/symbol theoretical limit

○ Linear computational time
● Example on right: English

alphabet

Huffman Coding

● Let's try! Let's code the

following in Fixed coding

v.s. Huffman coding
○ "Hello"
○ "Henry"
○ "Qin Zhou"

Limits of Huffman Coding

● Huffman coding requires probability

distribution to be known in prior

● Can only code symbol by symbol
○ Base on an assumption that the symbols are

independent and identically distributed
● Is there a codeword assignment method...

○ that is adaptive to changing input statistics, and
○ can combine symbols for even more efficient

coding? (e.g. 'ist' often come together in English, or
equivalent patterns in images and sound)

Multiple-Symbols Encoding

For simplicity, let's use text as example - intuitive steps
would be:

Static Dictionary Case

Static Dictionary Case

Static Dictionary Example

Static Dictionary Example

Limitations of Static Dictionary

● Limitations:
○ A dictionary made for one type of document is good

for that type of document only
○ Dictionary has to be transmitted along with the

coded multimedia - high overhead!
● If we want to be better than Huffman Coding

we need to be more adaptive

Next Chapter...

● LZ77, LZ78 and LZW - codeword

assignment with adaptive dictionary
○ Used in GIF and widely used in text compression

● Also the missing step 1…

Transformer Quantizer Codeword
Assignment

Scalar quantization
- Uniform
- Non-uniform
- With pseudo-noise
Vector quantization
- K-Means

Fixed length coding
Variable length-coding
- Huffman Coding
Multiple symbols coding
- Static Dictionary
- Adaptive Dictionary

?

