IERG4190 | IEMS5707

Multimedia Coding and
Processing

Chapter 2: Multimedia Coding Basics

Bolei Zhou
Department of Information Engineering, CUHK
Spring 2021

Announcement

e Assignment 1 will be out this week on
Blackboard

e TA Office Hour: Wed 6:00 pm — 7:00 pm

e TA Tutorial: Wed 6:00 pm — 6:45 pm (Week
3 — Week 10). It continues to be Office Hour

after the tutorial. ZOOM link is in the Google
Doc

Outline

. Some Basics

. Redundancy

. Elements of a Multimedia Coding System

. Scalar Quantization

. Vector Quantization

. Dithering

. Huffman Coding

. Multi-Symbol Coding with Static Dictionaries

ONOO OV P, WDN -

Basic Terminology

e Pixels (of an image, we will investigate in
more details later)

e Frames (of a video)

e Encode v.s. Decode

e Compress v.s. Decompress/Reconstruct

2D Signals

A 2D signal is just 2D. No need to be scared.

20

15[.

[}1'
10/‘]
5[\
0
NETRVAYEYEL
’ 11] 1.. \)I’ 1 _il

/ Al 3 1
10 0 0.002 0004 0.006 0.008 0.01

t

E.g. amplitude of the signal
may denote any channel
(R,G,B) of a color image

2D Signals

Multimedia Coding

e \We want to store and transmit videos,
images and sound efficiently

e So rather than storing or transmitting them in
its naive representation, we want to
compress/decompress them

e How? Redundancy

e Redundancy comes in many forms

Statistical Redundancy

e For an image, neighboring pixels are usually

similar (spatial redundancy)
e For a video, successive frames are usually

similar (temporal redundancy)

x
D \\M

Semantic Redundancy

Psychovisual or -acoustical Redundancy

e Our perception is not omnipotent and not
perfect

e \We may not notice some color differences,
or may not hear some part of a tone - in
such cases part of our signal could be
redundant

Unconvinced? Try the Color Challenge:
https://www.Xxrite.com/hue-test

Let's Have an Experiment!

Appliance Specific Redundancy

e Our appliance itself has limited capability
o E.g. for sound, your speaker

"Look how
colorful it is!!"

Lossless v.s. Lossy Compression

e Lossless compression: can only rely on
reducing statistical redundancy
e Lossy compression: exploit psychovisual

or psychoacoustical redundancy

o lIrreversible mapping
o Exact reconstruction not possible

Elements of a Multimedia Coder

—{ Transformer |—| Quantizer |—| Codeword |
Assignment

Transformer: transform the input data into a
form more amenable to compression

e.g. Discrete Fourier Transforms (DFT),
Discrete Cosine Transform (DCT) etc.

Elements of a Multimedia Coder

—{ Transformer |—| Quantizer |—| Codeword |
Assignment

Quantizer: represent transformed signal with a
limited number of levels/symbols; an
irreversible operation;

E.g. scalar quantization, vector quantization

Elements of a Multimedia Coder

Codeword | _,
Assignment

— Transformer |— Quantizer —

Codeword Assignment: Assign codewords to
the quantized output, creating a bit stream
e.g. fixed length coding v.s variable length
coding

Elements of a Multimedia Decoder

_,| Codeword — | De-quantizer |— Inverse
Lookup Transformer

Codeword Lookup: Decodes bitstream into
guantized levels

Dequantizer: Reverse the quantization of
quantizer

Inverse Transformer: Reverse the
transformation for display/playback

Different EncodingiDecoding Methods

e Choices of transformer, quantizer and
encoder (and their reconstruction
equivalents) result in different multimedia
coding methods

e Human psychovisual data used in standards
like JPEG, MPEGs and H.26x

Scalar Quantization

To represent a continuous
scalar value f with a finite
number of bits, only a
finite number of
guantization levels L can
be used. If each scalar is
quantized independently,
the procedure is called
scalar quantization.

-0.5

Original and Quantized Signal
1

| j
0.5 1 15 2

-1

0
Quantization Error

0.5 : : :
’ \N\/U\N\/VW\I\H/U\M/IA/\
0 0.5 1 15 2

Uniform Quantization

Uniform quantization: equal spacing of reconstruction levels.
Example: image intensity f: 0~1

I; - reconstruction levels
d; : decision bounaries

Uniform f

e .
quantizer

Number of reconstruction levels : 4

ry r r
do di o dz ’ ds s d4
|] |] | I | |
| | | | |
| | | | l
I | | | |
1 1 I | L ¢
o 1 1 a3 41 5 a 1
s 4 8 3 8 % %

Uniform Quantization

Output level Output level

h - —

.
)4 —

Zl pr—

~ 4 2 Input
- 1 " l l mu
4 4 | } Input 1 1 ~ - = bt
: : 0 2 ‘ level
= -_2 A 2
T4 |-— i

Fig 1 : Mid-Rise type Uniform Quantization Fig 2 : Mid-Tread type Uniform Quantization

Bits and levels

2-bit resolution with four levels 3-bit resolution with eight levels

Non-Uniform Quantization

r r r r
do 4 dy : da Y da o ds
| |] I : :
r; : reconstruction levels /}/ \B L R
d; : decision bounaries 72 T T R T A

~

Quantization error/noise: e,=f-f

Uniform quantization: straightforward and natural, but not optimal

e.g., if f rarely falls between d, and d,, 1, is rarely used (thus only 3
levels are used actually).

Rearranging r,_, so that they all lie between d, and d, makes more
sense and reduces total quantization error.

Non-Uniform Quantization

r; - reconstruction levels
d; : decision bounaries

Optimally choose r; and d,

Assume fyn < f < fuax
L = the number of reconstruction levels
ps(fo) : probability density function for f

e . Saax y. 2 s
Minimize D jf :f\.m(f_fo)— pr(fo)dfy s felnn,..n}

Non-Uniform Quantization

We can write D as

D=X[" p,(f)~ f)d,

L
k=1 f0=dk-l

To minimize D, we need,

6—D=O, 1<k<L
ark
aD—O, 1<k<L-1

Non-Uniform Quantization

Solving the two sets of equations, we get,

oD dy
on, } zjfowh-. P (Jo)(5 = fo)dfo =0
oD : ,
= P, ()5 ~dy) = p, ()5 —d,) =0
od,
n lved
Therefore, lc’:eacutr)seivse(?y e
d, ,
[fop, (S, T given orober
r = =lo . 1<k<r divenprop
I‘ p;(fo)df, initial values
fo=d;_,

/

dk=(rk+rk+|)/2, lSkSL—l, (d0=dmin’ dL=dmax)

Non-Uniform Quantization

Solutions to optimal problems:
Example 1 p(fo): Uniform density, -1 <f; <1
2 bits (4 reconstruction levels)
3l
4

|

Example 2 py(fo): Gaussian with mean of 0 and variance of 1
2 bits (4 reconstruction levels)

|

-1.5104 -0.9816 -0.4528

I
I
I
I
I
1

» f

ad e - - - - -

I
I
I
I
I
1
0

AT . ——

BPENSL R I
7 RS T

| I
| I
| I
| I
| I
1 1

» f

I
I
I
I
I
1
0

04528 09816 15104

Non-Uniform Quantization

Uniform quantization for
Example 2

Non-uniform quantization for
Example 2

Non-Uniform Quantization

e |nput signal follows Gaussian distribution

0.4
0.35
0.3 1 16
0.25 A
0.2 4
0.15 4
0.1 1
0.05 4
0

Normal(0,1)

T T T T T T T T T 1
5 -4 -3 -2 - 0 1 2 3 4 5

X
Normal COF

44444444444

Cumulativexdistribution

Vector Quantization

e Sometimes scalar quantization is too limited
e Forinstance, a pixel of an image may have 3
channels (red, green, blue)

[110,165247] —

Just In Case...

e Modern images are usually
composed of three color
channels: Red, Green and Blue

e Each pixel is thus represented
by an RGB vector [r,g,b] usually
already quantized individually to
256 levels ([0,2535])

e How many bits?

The three RGB colors are each 8-bits
(possible values [0.. 255], 28 = 256)

Vector Quantization

e Instead of quantizing each scalar value
(red,green,blue intensities) separately, we want
to quantize the combined color (a vector)

Some finite levels \'
of blues for the sky

Some finite levels of
aqua color for the
water

Vector Quantization

e Similar to scalar quantization, we need to
have decision boundaries and reconstruction
levels - but they will also now be vectors in
the RGB space

e How to set them automatically?

o Very similar to the non-uniform scalar quantization
we have seen just now

Vector Quantization

e |In Vector Quantization we call the set of
reconstruction levels a codebook or
dictionary and the space with each decision
boundary a cell

e Using our intuition, the reconstruction levels
could be the center (or more properlv
centroids) of these cells |

Pipeline of Vector Quantization

The Encoder The Decoder
Input Vector Output Vector
o Search .
Engine :
r
Codebook Indices Indices Codebook

—4

-—

Channel

W istocieati ..fm

—

= &
[
¥ e e W Y
|

- o e

K-Means Clustering

Necessary conditions for optimality: min E[d(f,r,) |f € C,]

Condition 1: f2
Given reconstruction levels (rq, 1o, I3, ...
Choice of cell boundaries:

For every f,
VQ(f) = r; for smallest d(f, r;)

Condition 2:
Given cell boundaries

cell

Choice of reconstruction levels:
r; with minimum average d(f, r;) for f
within cell boundary
r,=argmin E[d(f,r,) |f e C,]

K-Means Clustering

Implications of the two conditions:

Reconstruction levels and cell boundaries: interdependent

Reconstruction levels «» Cell boundaries
Codebook : Need to store only reconstruction levels

Iterative procedure
Initial reconstruction levels
J

Cell boundaries

\

Revised reconstruction levels

\

Revised cell boundaries

\

Difficulties:
(1) too many d(f, r;) to compute
(2) r, 1s hard to compute since
p,(f') is often unknown

Solution:
a set of training samples +
K-means algorithm

K-Means Clustering

K-means algorithm (clustering)

° L
. N o
“e* o ¢ “e®
o *%, L ¢ o 00,
® .. _> o]
o o
o':.. ¢ °
o ° ¢
o
e] ° ..]
] o ¢ o o
...'.. o ® ...'..
o o <_ o
o°§§’o © o
o o]
o]

K-Means Clustering

Initial codebook vectors

K=1L Iy 1S <L
l

Use a large set of M training

Classification of M training vectors data
to L clusters by quantization

l

Estimation of r, by computing
centroid of the vectors within
each cluster

——P—

Average distortion:

Significant
change in D
?

| A
D=—>Yd(f.f
MZ (f.£)

Stop

Codebook designed: List of r;

Interactive Demonstration

http://user.ceng.metu.edu.tr/~akifakkus/courses
/ceng574/k-means/

http://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/

K-Means Clustering

e Having K reconstruction levels means

codebook of size K
o Need only log,(K) bits per pixel to store/transmit

Original K=24VQ K=64VQ
8 x 3 bits ~5 bits 6 bits

K-Means Clustering

e Most used in indexed color coding
e Supported in BMP, PCX, GIF and an option
in PNG

Original K=24VQ K=64VQ
8 x 3 bits ~5 bits 6 bits

Vector v.s. Scalar Quantization

e Clearly VQ is computationally more intensive
o Requires training data
o Clustering takes time (for transmitter only)
o Receiver only needs to look up codebook

e As a trade-off, it offers potentially much

better performance than scalar quantization

o In previous example, scalar quantization could afford
only 2-bits per color channel if we intend to keep the
guantization output the same size

A simulated non-uniform
scalar quantization result,
2 bits per color channel

Can We Improve Scalar Quantization?

e Sometimes scalar quantization is needed
o Hardware limitation etc.

e Can be considered a pulse-code modulation (PCM) problem (and have
been under research long ago)

PCM-coded
2 bits/pixel
4 grey levels

Original image

False contours
(signal-dependent
quantization noise)

The signal-dependent
noise can be periodic and

very distracting to the fithl=f
human observer - not
desirable t

1 : fi-f
If_f;l]\/\w 3
14 f_ 1

signal-dependent quantization noise signal-independent quantization noise

Adding Pseudo Noise

Improvements of PCM

* Roberts's pseudonoise technique
Decorrelation of signal-dependent quantization noise

Transmitter : N Receiver
. + . =
f(ny, No) — Uniform) .
(™, N2 T Quantizer|] _ fny, n2)
[
w(n, ng) = = = = = = =—w(ny, n2)
« Reduction of quantization noise
Transmitter " Receiver

|
= Unif L+ Noise
niform [, o F
f(n1, n2) +®_’ Quantizer & Reduction f(n1, n2)

Adding Pseudo Noise

Original image

PCM-coded
2 bits/pixel
(4 grey levels)

PCM-coded

2 bits/pixel

(4 grey levels)
with Roberts’s
pseudonoise
technique

PCM-coded

2 bits/pixel

(4 grey levels)
with Roberts’s
pseudonoise
technique +

noise reduction

Adding Pseudo Noise

e Original paper:
http://www.packet.cc/files/pic-code-
noise.html

e Gives you a perspective of researchers
trying to solve multimedia problems long
before use of computers

http://www.packet.cc/files/pic-code-noise.html

Dithering

e An well-designed applied noise to randomize
guantization error

e In this extreme example we only have 2 quantization
levels - black and white

o "Threshold" is generic scalar quantization and
"Random" is adding pseudo noise
o Both not particularly acceptable

(Original) Threshold Random

Effect of Color Banding

8-bit gradient 8-bit gradient,
dithered

Effect of Color Banding

Dithering

e Concept of error diffusion
o Quantization residual is distributed to neighboring
pixels that have not yet been processed
o Invented for fax machines and black-and-white
copiers where very coarse quantization is a must

Floyd-Steinberg Jarvis, Judice & Ninke Stucki Burkes

Sierra Two-row Sierra

T G
,. e ot R

* =7

e e
OSSR

U

Sierra Lite Atkinson
GRS IRENSSS
i

’

How Dithering works

Error diffusion: push the residual quantization
error of a pixel onto its neighboring pixels

Convolution kernel

7

* 16

3 5 1
16 16 16

for each y from top to bottom do
for each x from left to right do
oldpixel := pixel[x][y]

newpixel := find closest palette_color(oldpixel)

pixel[x][y] := newpixel

quant_error := oldpixel - newpixel

pixel[x + 1][y] := pixel[x + 1][y] + quant_error x 7 / 16
pixel[x - 1][y + 1] := pixel[x - 1][y + 1] + quant_error x 3 / 16
pixel[x [y + 1] := pixel[x][y + 1] + quant_error x 5 / 16
pixel[x + 1][y + 1] := pixel[x + 1][y + 1] + quant_error x 1 / 16

https://en.wikipedia.org/wiki/Floyd%E2%80%93Steinberg_dithering

https://en.wikipedia.org/wiki/Floyd%E2%80%93Steinberg_dithering

Dithering in Modern Times

e A cool video game with dithering effect
o https://dukope.itch.io/return-of-the-obra-dinn

Return of the

Obra Dinn

https://dukope.itch.io/return-of-the-obra-dinn

Codeword Assignment

— Transformer |— Quantizer — Codeword |

Assignment

e \We have seen some simple design choices
we have for quantization
e \We will now move on to codeword

assignment
o Fixed-length coding (FLC)
o Variable-length coding (VLC)

Fixed-Length Coding

e \We code a quantized symbol
into bits of a certain length
e | east trouble: fixed length

coding
o 8 symbols (levels of quantization)
o 3 bits!

001010101000001111110
!
001 010 101 000 001 111 110

|
r1 r2 r5 0 r1 7 16

3 bits

000
001

—_ ek A O0

Sl Ok =t O

Variable-Length Coding

e \We code a quantized symbol into bits of a
certain length
e | east trouble: check the total number of

symbols and determine a code length
o e.g. 64 symbols -> 6 bits minimum

e Can we use less bits?

o Intuition: if we use more bits for more rare symbols
and less bits for more frequent symbols, will we be
using less bits, as a whole?

o e.g. use 1 bit for most frequent color, and many bits
for less used color

Uniquely Decodable

e To0 use variable-length coding we need to

make sure code is uniquely decodable
o Codeword are assumed to be received sequentially
on the receiver side

L=4 (uniquely decodable) L=4 (not uniquely decodable)

Mo 00 lo 0

r 01 1 1

o 10 r 00 r,ortwory?
3 11 I3 01

Entropy

From Information Theory, the entropy of a
discrete random variable X with possible values
{X4,...,x,} and probability mass function P(X) is
written as:

H(X) = Z P(x;) I(z;) = — E P(x;)log, P(x;)

Here I is called the information content of X

Entropy

Message possibility

al

a,
Message possibility

a,

aH

Probability

py =1 H= 7
p2=0

Probability

T
I
"~

P =

P2 =

What is the entropy in the above 2 cases?

Entropy

First case is trivial (a zero in both terms)

Second case:

H(X) = ZP ;) log, P(z;)
RSN
o s 2 g2 2

2

Z_Z%.(_l —

Entropy

Message possibility Probability

a p =1 H=0
a, p> =0

Message possibility Probability

=
|

an

RS
)
I

(maximum entropy for L=2)

The more "uncertainty” a message resolves, the more
information it contains.

Entropy

Plotted results for different coin probabilities: A
binary entropy function

A
1.O

Does it fit
your
intuition?

')"—) e

H(X)

()

() 0.5 |.0)
Pr(X =1)

Entropy and Coding

In information theory, H is the theoretically minimum possible average
bit rate required to code a message.

Definition of entropy does not specify a method to design codewords,
but is useful in practice, since if the average bit rate is close to H, the
coder is considered efficient.

Example:
Message possibility Probability Codeword
a, p,=1/4 00
a p,=1/4 01
as p,=1/4 10
a, p.=1/4 11

Entropy H = 2, average bit rate = 2 bits/message

Huffman Coding

e A simple optimal prefix code
o Prefix code means no valid code word is a prefix of
any other valid code word
o This implies code word can be uniquely decoded in

our case
o Let's look at an example

Huffman Coding

e Step 1: Create a binary tree of nodes for

each symbol

o Start with the least probable, combine the lowest
probability pair to form a new node

o the new node has a probability equal to sum of the
probability of its children

al: 0.4

a2: 0.35 1

a3:0.2 0.0

ad: 0.05 ———

Source: en.wikipedia.org

Huffman Coding

e Step 2: After tree is complete (with root
node), start assigning code word from the
right
o Give 0 to top/left child and 1 to bottom/right child

o (Go along the tree, increase code length by 1 each
time

al: 0.4

a2: 0.35 1

a3:0.2 0.0

ad: 0.05 ———

Huffman Coding

e Step 3: Final Huffman Code would be the

code assigned to each leaf node
o Note that they are all unique decodable
o The rarest symbols would have the longest code

words
Symbol | Final Code
al: 0.4 0 a’ 0
10 L |az 10
az2: 035 1
1 a3 110
- 110 Y
a3: 0.2 11 i a4 111

™ -)c
ad' 0.05 111 J.&d

Huffman Coding

e Near optimal coding
o In the above example: 1.85
bits/symbol versus 1.74
bits/symbol theoretical limit
o Linear computational time

e Example on right: English
alphabet

Symbol |Frequency [Huffman Code
[space] | 67962112 111
- 37907119 010
t 28691274 1101
a 24373121 1011
0 23215532 1001
i 21820970 1000
n 21402466 0111
s 19059775 0011
h 18058207 0010
r 17897352 0001
| 11730498 10101
d 10805580 01101
c 8982417 00001
u 8022379 00000
f 7486889 110011
m 7391366 110010
w 6505294 110001
y 5910495 101001
p 5719422 101000
g 5143059 011001
b 4762938 011000
v 2835696 1100000
k 1720909 11000011
X 562732 110000100
i 474021 | 1100001011
q 297237 | 11000010101
2 93172 |11000010100

Huffman Coding

e Let's try! Let's code the
following in Fixed coding

v.s. Huffman coding
o "Hello"

O "Henryll

o "Qin Zhou"

Symbol |Frequency [Huffman Code
[space] | 67962112 111
- 37907119 010
t 28691274 1101
a 24373121 1011
0 23215532 1001
i 21820970 1000
n 21402466 0111
s 19059775 0011
h 18058207 0010
r 17897352 0001
| 11730498 10101
d 10805580 01101
c 8982417 00001
u 8022379 00000
f 7486889 110011
m 7391366 110010
w 6505294 110001
y 5910495 101001
p 5719422 101000
g 5143059 011001
b 4762938 011000
v 2835696 1100000
k 1720909 11000011
X 562732 110000100
i 474021 | 1100001011
q 297237 | 11000010101
2 93172 | 11000010100

Limits of Huffman Coding

e Huffman coding requires probability
distribution to be known in prior

e Can only code symbol by symbol
o Base on an assumption that the symbols are
independent and identically distributed

e |s there a codeword assignment method...
o that is adaptive to changing input statistics, and
o can combine symbols for even more efficient
coding? (e.g. 'ist' often come together in English, or
equivalent patterns in images and sound)

Multiple-Symbols Encoding

For simplicity, let's use text as example - intuitive steps
would be:

e reading in input symbols

e |ooking for groups of symbols that appear in a dictionary

e outputting a pointer or index to the phrase dictionary (instead of
the codes for single symbols) if a string match is found.

The longer the match is, the better the compression ratio. The method
takes advantage of the correlation within the input.

Two types:

e static dictionary
e adaptive dictionary

Static Dictionary Case

Digram coding:

The dictionary consists of all letters of the source alphabet followed
by as many pairs of letters, called digrams, as can be accommodated
by the dictionary.

Example: Suppose we have a source with five letter alphabet
{a,b,c,d,r}. Based on knowledge about the source, we build the

dictionary:

Code Entry Code Entry

000 a 100 r
001 b 101 ab
010 C 110 ac
011 d 111 ad

Static Dictionary Case

To encode the sequence abracadabra, we have:

Code Entry Code Entry
ab: 101 000 a 100 r
001 b 101 ab
ra: not in the dictionary 81? g 11? 23
r 100
ac: 110,

Output: 101100110111101100000

More efficient? Yes, because 21 bits < 11 x 3 = 33 bits.

Static Dictionary Example

YTABLE 5.2 Thirty most frequently occurring pairs of characters in a
41,364A-character-long LaTeX document.

Pair Count) Pair Count
eb 1128 ar 314
)i 838 at 313
bb 823 pw 309
th 817 te 296
he 712 pbs 295
in 512 dp 272
sh 494 po 266
er 433 io 257
pa 425 co 256
th 401 re 247
en 392 5 246
on 385 rh 239
np 353 di 230
ti 322 ic 229
pi 317 ct 226

b: a space

Static Dictionary Example

TABLE 5.3 Thirty most frequently occurring pairs of characters in a
collection of € programs containing 64,983 characters.

Pair Count o Pair Count
bb 5728 st 442
nlp 1471 le 440
ynl 1133 ut 440
in 985 S 416
nt 739 ar 381
=p 687 or 374
bi 662 b 373
th 615 en 371
b= 612 er 358
) 558 ri 357
Ny 554 at 352
ninl 506 pr 351
bf 505 te 349
ep 500 an 348
b= RRE lo 347

b: a space; nl:anew line

Limitations of Static Dictionary

e Limitations:
o A dictionary made for one type of document is good
for that type of document only
o Dictionary has to be transmitted along with the
coded multimedia - high overhead!

e |f we want to be better than Huffman Coding
we need to be more adaptive

Next Chapter...

o | /Z77,LZ78 and LZW - codeword

assignment with adaptive dictionary
o Used in GIF and widely used in text compression

e Also the missing step 1...

— Transformer |— Quantizer |—»| Codeword |

Assignment
) Scalar quantization Fixed length coding
: - Uniform Variable length-coding
- Non-uniform - Huffman Coding
- With pseudo-noise Multiple symbols coding
Vector quantization - Static Dictionary

- K-Means - Adaptive Dictionary

