

Introduction on Generative Modeling

Bolei Zhou

The Chinese University of Hong Kong

Outline

- Introduction: from recognition to recreation
- Overview of the generative models
- Understanding generative models
- Inverting images for real image editing

Outline

Introduction: from recognition to recreation
Overview of the generative models
Understanding generative models
Inverting images for real image editing

Recognizing the Visual World

Input Image

Scene Recognition

Street, Residential neighborhood

Scene Parsing

Datasets + Deep Neural Networks

2016: ResNet 2017:DenseNet >100 layers

2009: 1.2 million images

2014: 120k annotated images

2014: VGG 2015: GoogLeNet

22 layers

Largest Scene Recognition Dataset.10 million images from 400 categories.5,000 AMT workers involved

spare bedroom

messy bedroom

teenage bedroom

romantic bedroom

[**Zhou**, Lapedriaza, Xiao, Torralba, Oliva, NIPS 2014], [**Zhou**, Lapedriaza, Khosla, Oliva, Torralba, IEEE PAMI 2017]

http://places2.csail.mit.edu/

Nature

Urban

http://places2.csail.mit.edu/demo.html

Live Demo: Scene Recognition based on PlacesCNN

<u>http://places2.csail.mit.edu/demo.html</u>

Pixel-Annotated ADE20K dataset

- Annotating each object instances in a scene
- Single expert annotator for >5 years of work

Labelme Annotation Tool

Zhou, et al. Scene parsing through ade20k dataset. CVPR'17

Ms. Adela Barriuso

Neural Networks for Scene Parsing

Input

https://github.com/CSAILVision/semantic-segmentation-pytorch

Live Demo: Semantic Segmenation

<u>https://colab.research.google.com/github/CSAILVision/semantic-segmentation-pytorch/blob/master/notebooks/DemoSegmenter.ipynb</u>

Recognizing the Visual World

Input Image

Scene Recognition

Street, Residential neighborhood

Scene Parsing

From Recognition to Recreation

Recognizing the scene It is a living room

Recreating the scene

Recreating Scene is Challenging

How to Teach Machine to Recreate a Scene?

Concept of Perspective? Concept of Objects? Textures and Colors of Objects? Definition of Scene Category?

Silver Bullet of Deep Neural Networks Deep Learning + Data

Classification versus Generation

Discriminative Model

Generative Models

Goodfellow, et al. NIPS'14 Radford, et al. ICLR'15 T Karras et al. 2017 A. Brock, et al. 2018

Richard Feynman: "What I cannot create, I do not understand"

Inference and Generation

layout

Statistical Generative Models

- Data: samples such as images of bedrooms
- Prior knowledge: distribution functions (Gaussian, or other nonlinear?), loss function (e.g., maximum likelihood, adversarial loss?),

Progress for Image Generation

PG-GAN

StyleGAN

BigGAN

Progress for Speech Synthesis

Text to Speech

0

WaveNet

Input	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		200	INIUSIC
																		\sim	Music
Hidden	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				Unconditional
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				WaveNet
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				Concatenative
Output	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				Parametric

Image Super Resolution

Conditional generative model P(high res image | low res image)

Machine Translation

Conditional generative model P(English text| Chinese text)

Paragraph Generation

Completion

To better learn statistics, students should understand the functions of probability, statistics, and probability distributions. They should also understand the basic logic that underlies statistics and find their own ideas and methods for applying the logic to new problems. Their basic understanding of probability and statistics should provide the foundation they will need to think creatively and critically when dealing with critical situations and problems. They should understand the information we can find out by running statistical tests, and they should understand the implications and limitations of such information. They should be able to apply basic math concepts, statistics, probability and mathematics to their own particular circumstances and to teach other students. They should be able to analyze and critique the many issues of statistics that are in our society. They should be able to tell about possible sources

Radford et al., 2019. Demo from talktotransformer.com

DeepFakes (video+audio)

Image Translation

Conditional generative model P(zebra images | horse images)

Outline

Introduction: from recognition to recreation
Overview of the generative models
Understanding generative models
Inverting images for real image editing

Overview of Generative Models

- Likelihood-based models: Autoregressive models
- Latent variable models: Variational Autoencoder (VAE)
- Implicit generative models: Generative Adversarial Networks (GANs)

Autoregressive generative model

• Given a dataset of handwritten digits (binarized MNIST)

- Each image has n = 28x28 =784 pixels, with each pixel either being black (0) or white (1)
- Goal: Learn a probability distribution $p(x) = p(x_1, ..., x_{784})$

Autoregressive generative model

- We can use chain rule for factorization:
 - $p(x_1, ..., x_{784}) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2)...p(x_n|x_1, ..., x_{n-1})$
- Then we can have the following simple autoregressive model
 - P(x₁=1;a₁) = a₁, p(x₁=0;a₁) = 1-a₁
 - $P(x_2=1|x_1;a_2) = logit(a_{02}+a_{12}x_1)$
 - $P(x_3=1|x_1,x_2;a_3) = logit(a_{03}+a_{13}x_1+a_{23}x_2)$

$$\begin{array}{c}
\hat{x}_1 \\
\hat{x}_2 \\
\hat{x}_3 \\
\hat{x}_4 \\
\hline
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{array}$$
FVSBN

$$\lambda_i = p(X_i = 1 | x_1, \cdots, x_{i-1}; \boldsymbol{\alpha}^i) = p(X_i = 1 | x_{< i}; \boldsymbol{\alpha}^i) = \sigma(\alpha_0^i + \sum_{j=1}^{i-1} \alpha_j^j x_j)$$

Fully visible sigmoid belief network (FVSBN)

NADE: Neural Autoregressive Density Estimation

To improve the factorization model: use one-layer neural network instead of logistic regression

$$\mathbf{h}_{i} = \sigma(A_{i}\mathbf{x}_{

$$\hat{x}_{i} = p(x_{i}|x_{1}, \cdots, x_{i-1}; \underbrace{A_{i}, \mathbf{c}_{i}, \alpha_{i}, b_{i}}_{\text{parameters}}) = \sigma(\alpha_{i}\mathbf{h}_{i} + b_{i})$$

$$\mathbf{h}_{2} = \sigma\left(\left(\bigcup_{i=1}^{i} \mathbf{w}_{1}\right)_{x_{1}}\right) \mathbf{h}_{3} = \sigma\left(\left(\bigcup_{i=1}^{i} \mathbf{w}_{1}\mathbf{w}_{2}\right)_{x_{3}}\right) \mathbf{h}_{4} = \sigma\left(\left(\bigcup_{i=1}^{i} \mathbf{w}_{1}\mathbf{w}_{2}\mathbf{w}_{3}\right)_{x_{3}}\right) \mathbf{h}_{4} = \sigma\left(\bigcup_{i=1}^{i} \mathbf{w}_{1}\mathbf{w}_{2}\mathbf{w}_{3}\right)_{x_{3}} \mathbf{h}_{4} = \sigma\left(\bigcup_{i=1}^{i} \mathbf{w}_{1}\mathbf{w}_{2}\mathbf{w}_{3}\right)_{x_{3}} \mathbf{h}_{4} = \sigma\left(\bigcup_{i=1}^{i} \mathbf{w}_{1}\mathbf{w}_{2}\mathbf{w}_{3}\right)_{x_{3}} \mathbf{h}_{4} = \sigma\left(\bigcup_{i=1}^{i} \mathbf{w}_{1}\mathbf{w}_{2}\mathbf{w}_{3}\mathbf{w}_{3}\right)_{x_{3}} \mathbf{h}_{4} = \sigma\left(\bigcup_{i=1}^{i} \mathbf{w}_{1}\mathbf{w}_{2}\mathbf{w}_{3}\mathbf{w}_{3}\right)_{x_{3}} \mathbf{h}_{4} = \sigma\left(\bigcup_{i=1}^{i} \mathbf{w}_{1}\mathbf{w}_{2}\mathbf{w}_{3}\mathbf{w}_{3}\mathbf{w}_{3}\right)_{x_{3}} \mathbf{h}_{4} = \sigma\left(\bigcup_{i=1}^{i} \mathbf{w}_{1}\mathbf{w}_{2}\mathbf{w}_{3}\mathbf{w}_{3}\mathbf{w}_{3}\right)_{x_{3}} \mathbf{h}_{4} = \sigma\left(\bigcup_{i=1}^{i} \mathbf{w}_{1}\mathbf{w}_{2}\mathbf{w}_{3}\mathbf{$$$$

7	7	3	į	. 	2	5		Į.	Ø.	7	7	3		ł	3	3		2	Ø
3	4	2	R)	6	Ż	÷.	Ł	3	¥	3	6	5	3	6	8		l	8	4
ŃÌ	Ĩ.	9	3	ij.	*¥.,	7	5	3	6	4	6	9	3	5		1	5	3	6
	Ż	Ç	2	Ģ	З	بل،	1	•	0	5	1	5	3	9	3	7	1	ч	0
ŀ	8	9	5	Ð	12	i;	3	5	7	B	8	9	5	8	14	4	3	3	7
Ţ	Ċ,	4	Ó	•	q	3	1	7	1	9	8	4	Ó		9	3	1	7	1
8	3	\$	9	5	1	2	1	'n	4	8	3	5	9	5	1	2	1	5	4
5	35	1	.* _1	1	Э.	3	1	Z	6	6	3	9		1	3	Ø	H	2	5
-	ø	1	4	0	ļ	6	4	3	60	-	0	\hat{I}	4	0	1	6	6	\mathcal{G}	60
0	2	6	Ŝ	¢.	2	9	5	ġ	4	0	2	6	\$	$\mathcal{L}_{\mathcal{C}}^{\mathcal{C}}$	2	9	9	8	9

Training data

Samples from the probability

Figure from The Neural Autoregressive Distribution Estimator, 2011.

RNN: Recurrent Neural Networks

Suppose $x_i \in \{h, e, l, o\}$. Use one-hot encoding: • *h* encoded as [1,0,0,0], *e* encoded as [0,1,0,0], etc. **Autoregressive**: $p(x = hello) = p(x_1 = h)p(x_2 = e|x_1 = h)p(x_3 = l|x_1 = h, x_2 = e) \cdots p(x_5 = o|x_1 = h, x_2 = e, x_3 = l, x_4 = l)$ For example, $p(x_2 = e|x_1 = h) = softmax(o_1) = \frac{exp(2.2)}{exp(1.0) + \cdots + exp(4.1)}$ $o_1 = W_{hy}h_1$ $h_1 = tanh(W_{hh}h_0 + W_{xh}x_1)$

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNN: Recurrent Neural Networks

RNN model on Wikipedia

Naturalism and decision for the majority of Arab countries' capitalide was grounded by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal in the [[Protestant Immineners]], which could be said to be directly in Cantonese Communication, which followed a ceremony and set inspired prison, training. The emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known in western [[Scotland]], near Italy to the conquest of India with the conflict. Copyright was the succession of independence in the slop of Syrian influence that was a famous German movement based on a more popular servicious, non-doctrinal and sexual power post. Many governments recognize the military housing of the [[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]], that is sympathetic to be to the [[Punjab Resolution]]

(PJS)[http://www.humah.yahoo.com/guardian.

RNN model on Linux source code

- /*
- * Increment the size file of the new incorrect UI_FILTER group information
- * of the size generatively.

*/

static int indicate_policy(void)

```
int error;
if (fd == MARN EPT) {
  /*
   * The kernel blank will coeld it to userspace.
   */
  if (ss->segment < mem total)</pre>
    unblock graph and set blocked();
  else
    ret = 1;
  goto bail:
segaddr = in SB(in.addr);
selector = seg / 16;
setup works = true;
for (i = 0; i < blocks; i++) {</pre>
  seq = buf[i++];
  bpf = bd->bd.next + i * search;
  if (fd) {
    current = blocked;
```

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
PixelRNN and PixelCNN (Oord et al. 2016)

Model image pixel by pixel using raster scan order

$$p(x_t \mid x_{1:t-1}) = p(x_t^{red} \mid x_{1:t-1})p(x_t^{green} \mid x_{1:t-1}, x_t^{red})p(x_t^{blue} \mid x_{1:t-1}, x_t^{red}, x_t^{green})$$

https://arxiv.org/pdf/1601.06759.pdf

PixelCNN and PixelRNN (Oord et al. 2016)

Figure 1. Image completions sampled from a PixelRNN.

Samples from PixelRNN trained on ImageNet

WaveNet (Oord et al. 2016)

• CNN with 1D dilated convolutions

	0 0			Jt
	0	0	0	•
		0	0	•
	0	0	0	•
	0	0	0	•
	0	0	0	•
0.0	0	0	0	•
0	0	\bigcirc	0	•
	0	0	0	•
0	0	0	0	•
0	0	0	0	•
0	0	0	0	•
0	0	0	0	•
•	0	0	0	•
•	0	0	0	•
0.0	0	0	0	•

https://deepmind.com/blog/article/wavenet-generative-model-raw-audio

Summary of Autoregressive Models

- Autoregressive models:
 - Chain-rule factorization is fully general
 - Compact representation via conditional independence and/or neural parameterizations
- Pros:
 - Easy to evaluate likelihoods
 - Easy to train
- Cons:
 - Requires an ordering
 - Generation is sequential
 - Cannot learn features in an unsupervised way

Latent Variable Models

- Gender, eye color, race, pose are the variation factors in images, unless annotated, they are not explicitly available
- Then we can model them as (low-dimensional) latent variables

Latent Variable Models

Data generation process could be driven by the latent variables

Latent Variable Models

- We can define complex models p(x) in terms of simple building blocks p(x|z)
- It can be applied for unsupervised learning tasks easily
- Challenge: much more difficult to learn due to the latent variables.

A mixture of an infinite number of Gaussians:

•
$$z \sim \mathcal{N}(0, I)$$

- 2 $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks
- Solution Section 5.3 Even though $p(\mathbf{x} | \mathbf{z})$ is simple, the marginal $p(\mathbf{x})$ is very complex/flexible

Mixture of Gaussians as a simple latent variable model

Generative process:

- Pick a mixture component k by sampling z
- Generate a data point by sampling from that Gaussian

Mixture of Gaussians. Bayes net: $\textbf{z} \rightarrow \textbf{x}.$

1
$$\mathbf{z} \sim \text{Categorical}(1, \cdots, K)$$

Mixture of Gaussians as a simple latent variable model

Unsupervised learning: the posterior p(z|x) identifies the mixture component
 i = argmax p(z=i|x)

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) = \sum_{k=1}^{K} p(\mathbf{z} = k) \underbrace{\mathcal{N}(\mathbf{x}; \mu_k, \Sigma_k)}_{\text{component}}$$

Autoencoder

Autoencoder is originally proposed for dimensionality reduction and feature learning

G.E. Hinton et al Science, 2016.

Autoencoder

Autoencoder is originally proposed for dimensionality reduction and feature learning

Clustering using the latent features

G.E. Hinton et al Science, 2016.

Variational Autoencoder

- Problem with the vanilla autoencoder is that we cannot sample the latent code to generate new image
- Thus variational autoencoder is introduced

https://github.com/pytorch/examples/blob/master/vae/main.py

Variational Inference

Evidence Lower Bound (ELBO) holds for any q

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right)$$

=
$$\sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) - \sum_{\mathbf{z}} q(\mathbf{z}) \log q(\mathbf{z})$$

Entropy $H(q)$ of q
=
$$\sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) + H(q)$$

= $\mathcal{L}(\mathbf{x}; \theta, \phi) + D_{KL}(q(\mathbf{z}; \phi) || p(\mathbf{z} | \mathbf{x}; \theta))$

The better $q(\mathbf{z}; \phi)$ can approximate the posterior $p(\mathbf{z}|\mathbf{x}; \theta)$, the smaller $D_{KL}(q(\mathbf{z}; \phi)||p(\mathbf{z}|\mathbf{x}; \theta))$ we can achieve, the closer ELBO will be to $\log p(\mathbf{x}; \theta)$. Next: jointly optimize over θ and ϕ to maximize the ELBO over a dataset

Variational Inference

$$\begin{aligned} \mathcal{L}(\mathbf{x};\theta,\phi) &= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z},\mathbf{x};\theta) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))] \\ &= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z},\mathbf{x};\theta) - \log p(\mathbf{z}) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))] \\ &= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z};\theta)] - D_{\mathcal{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) \end{aligned}$$

Latent distribution

- Take a data point xⁱ
- 2 Map it to \hat{z} by sampling from $q_{\phi}(z|x^{i})$ (encoder)
- 3 Reconstruct $\hat{\mathbf{x}}$ by sampling from $p(\mathbf{x}|\hat{\mathbf{z}};\theta)$ (decoder)

What does the training objective $\mathcal{L}(\mathbf{x}; \theta, \phi)$ do?

- First term encourages $\hat{\mathbf{x}} \approx \mathbf{x}^i$ (\mathbf{x}^i likely under $p(\mathbf{x}|\hat{\mathbf{z}};\theta)$)
- Second term encourages \hat{z} to be likely under the prior p(z)

https://deepgenerativemodels.github.io/assets/slides/cs236_lecture5.pdf https://deepgenerativemodels.github.io/assets/slides/cs236_lecture6.pdf

Variational Autoencoder

Synthesis quality looked good, but not good for recent two-year standard

VQ-VAE and VQ-VAE-2

- Vector Quantized Variational AutoEncoder (VQ-VAE)
- Discrete latent representation + PixelCNN for handling posterior collapse

Figure 1: Class-conditional 256x256 image samples from a two-level model trained on ImageNet.

https://arxiv.org/pdf/1711.00937.pdf https://arxiv.org/pdf/1906.00446.pdf

VQ-VAE-2

https://arxiv.org/pdf/1711.00937.pdf https://arxiv.org/pdf/1906.00446.pdf

VQ-VAE and VQ-VAE-2

Very well handle mode-collapse issue in generative models

VQ-VAE on ImageNet's Tinca class

BigGAN

https://arxiv.org/pdf/1711.00937.pdf https://arxiv.org/pdf/1906.00446.pdf

Summary of Latent Variable Models

Pros:

- Easy to build flexible models
- Suitable for unsupervised learning

Cons:

- Hard to evaluate likelihood
- Hard to train via maximum-likelihood, as it is difficult to compute the posterior inference p(z|x) which requires variational approximations

Autoregressive models and Variational Autoencoders

Both model families are based on maximizing likelihoods (or approximation)

Autoregressive Models:
$$p_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} p_{\theta}(x_i | \mathbf{x}_{< i})$$

Variational Autoencoders: $p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$

- Is that likelihood a good indicator? Any other likelihood-free generative modeling?
- Can we throw away KL-divergence and likelihood???

Generative Adversarial Networks

A two-player minimax game between a generator and a discriminator

Goodfellow et al. NIPS'14

Training objective for discriminator:

$$\max_{D} V(G, D) = E_{\mathbf{x} \sim p_{\text{data}}}[\log D(\mathbf{x})] + E_{\mathbf{x} \sim p_{G}}[\log(1 - D(\mathbf{x}))]$$

For a fixed generator G, the discriminator is performing binary classification with the cross entropy objective

- Assign probability 1 to true data points $\mathbf{x} \sim p_{\mathrm{data}}$
- Assign probability 0 to fake samples $\mathbf{x} \sim p_G$

Optimal discriminator

$$D^*_G(\mathbf{x}) = rac{p_{ ext{data}}(\mathbf{x})}{p_{ ext{data}}(\mathbf{x}) + p_G(\mathbf{x})}$$

Training objective for generator:

$$\min_{G} V(G,D) = E_{\mathbf{x} \sim p_{\text{data}}}[\log D(\mathbf{x})] + E_{\mathbf{x} \sim p_{G}}[\log(1 - D(\mathbf{x}))]$$

For the optimal discriminator $D^*_G(\cdot)$, we have

$$V(G, D_{G}^{*}(\mathbf{x}))$$

$$= E_{\mathbf{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_{G}(\mathbf{x})} \right] + E_{\mathbf{x} \sim p_{G}} \left[\log \frac{p_{G}(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_{G}(\mathbf{x})} \right]$$

$$= E_{\mathbf{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\mathbf{x})}{\frac{p_{\text{data}}(\mathbf{x}) + p_{G}(\mathbf{x})}{2}} \right] + E_{\mathbf{x} \sim p_{G}} \left[\log \frac{p_{G}(\mathbf{x})}{\frac{p_{\text{data}}(\mathbf{x}) + p_{G}(\mathbf{x})}{2}} \right] - \log 4$$

$$= \underbrace{D_{KL} \left[p_{\text{data}}, \frac{p_{\text{data}} + p_{G}}{2} \right] + D_{KL} \left[p_{G}, \frac{p_{\text{data}} + p_{G}}{2} \right] - \log 4$$

$$2 \times \text{Jenson-Shannon Divergence (JSD)}$$

$$= 2D_{JSD} [p_{\text{data}}, p_{G}] - \log 4 \qquad p_{G} = p_{\text{data}}$$

Symmetric KL divergence

Optimal generator

Joint loss:

Repeat:

$$\min_{\theta} \max_{\phi} V(G_{\theta}, D_{\phi}) = E_{\mathbf{x} \sim p_{\text{data}}}[\log D_{\phi}(\mathbf{x})] + E_{\mathbf{z} \sim p(\mathbf{z})}[\log(1 - D_{\phi}(G_{\theta}(\mathbf{z})))]$$

GAN training algorithm

• Sample minibatch of m training points $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}$ from $\mathcal D$

- Sample minibatch of m noise vectors $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \ldots, \mathbf{z}^{(m)}$ from p_z
- Update the generator parameters θ by stochastic gradient **descent**

$$abla_{ heta} V(G_{ heta}, D_{\phi}) = rac{1}{m}
abla_{ heta} \sum_{i=1}^m \log(1 - D_{\phi}(G_{ heta}(\mathbf{z}^{(i)})))$$

• Update the discriminator parameters ϕ by stochastic gradient **ascent**

$$abla_{\phi} V(G_{ heta}, D_{\phi}) = rac{1}{m}
abla_{\phi} \sum_{i=1}^{m} [\log D_{\phi}(\mathbf{x}^{(i)}) + \log(1 - D_{\phi}(G_{ heta}(\mathbf{z}^{(i)})))]$$

Example code of training GAN

train with real netD.zero_grad() real_cpu = data[0].to(device) batch_size = real_cpu.size(0) label = torch.full((batch_size,), real_label, device=device)

```
output = netD(real_cpu)
errD_real = criterion(output, label)
errD_real.backward()
D_x = output.mean().item()
```

```
# train with fake
noise = torch.randn(batch_size, nz, 1, 1, device=device)
fake = netG(noise)
label.fill_(fake_label)
output = netD(fake.detach())
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
```


https://github.com/pytorch/examples/blob/master/dcgan/main.py

GenForce: Generative Modeling for Everyone

- <u>https://github.com/genforce/genforce</u>
- Open-source PyTorch library for generative modeling
- 60+ pretrained GAN models with Colab live demo

https://colab.research.google.com/github/genforce/genforce/blob/master/docs/synthesize_demo.ipynb

Live Demo: Try Pretrained Generative Models

• Try the Google Colab for BigGAN:

https://colab.research.google.com/github/tensorflow/hub/blob/maste r/examples/colab/biggan generation with tf hub.ipynb

• Try the Google Colab for StyleGAN from GenForce:

https://colab.research.google.com/github/genforce/genforce/blob/mas ter/docs/synthesize_demo.ipynb

Outline

Introduction: from recognition to recreation
Overview of the generative models
Understanding generative models
Inverting images for real image editing

What have been learned inside the GANs?

Deep Generative Representation

Some slides are from David Bau

Slide from David Bau

Are there watermark units?

Randomly generated image

www.hebsenostebsn oscenowww

Slide from David Bau

A STATE OF A

The second secon

Slide from David Bau

Winstelligenchanks.anotherage

www.bodtestock.undre.edu
Deactivating banner units in layer 4

Deactivating watermark units in layer 4

Randomly generated image

GAN Dissection [Bau et al., ICLR 2019]

Slide from David Bau

Randomly generated image

GAN Dissection [Bau et al., ICLR 2019]

Slide from David Bau

Randomly generated image

GAN Dissection [Bau et al., ICLR 2019]

Randomly generated image

GAN Dissection [Bau et al., ICLR 2019]

Randomly generated image

GAN Dissection [Bau et al., ICLR 2019]

Dissecting a GAN

Units Emerge as Drawing Objects

Unit 365 draws trees

Unit 43 draws domes

Unit 14 draws grass

Unit 276 draws towers

Turning off window units

Interactive Object Editing

Online demo: ganpaint.io

Semantic Photo Manipulation with a Generative Image Prior. SIGGRAPH 2019

Editing Objects vs. Global Attributes

Manipulating Global Attributes

Indoor lighting

Wooden style

Different layout

Living room

Deep Generative Representation

How latent code affects the output?

Random Walk in Latent Space of Bedroom

Multiple Levels of Abstractions for Scenes

Scene category:

bedroom Scene attributes: nature lighting wood foliage

Segmentation

Identifying the Causality in Latent Space

Predicted semantics

Scene category: bedroom Scene attributes: nature lighting, wood, foliage

To identify the cause-effect relations

Ceyuan Yang*, Yujun Shen*, Bolei Zhou. Semantic Hierarchy Emerges in Deep Generative Representations for Scene Synthesis. https://arxiv.org/pdf/1911.09267.pdf

Identifying Causality in Latent Space

Latent Space $Z_k \sim N(0, I)$

Image Space $x_k = G(z_k)$

Attribute Space $a_k = F(x_k)$

Pushing Latent Code through Boundary

Latent Space Natural lighting Indoor lighting

 $G(\mathbf{z} + \lambda \mathbf{b})$

Turning up the lights

Various Attribute Boundaries in Latent Space

Adding clouds

Adding vegetation

StyleGAN, StyleGANv2 [Karras et al]

DC-GAN, PG-GAN

Semantic hierarchy emerges from synthesizing scenes

Layer-wise latent vectors ■ □ □

Style-GAN

Layer Depth

Edit layout at layers 0-1

Edit category (Bedroom to Dining Room) at layers 3-6

Live Demo: Code of HiGAN

- https://github.com/genforce/higan
- Colab live demo: <u>https://colab.research.google.com/github/genforce/higan/blob/mast</u> <u>er/docs/HiGAN_Bedroom.ipynb</u>

Deep Generative Model for Faces

Randomly generated image

How to Customize the Output?

Different angle

Different age

Random Walk in the Latent Space

Causal Relations in the Latent Space

Predicted Attributes:

Male, middle age, front face, no glasses

InterFaceGAN: Interpreting Semantics in Face GANs

Yujun Shen, Jinjin Gu, Xiaoou Tang, Bolei Zhou. CVPR2020

Varying the Latent Code through Boundary

More female

Decision Boundary

Various Attribute Boundaries to Divide the Latent Space

Make me cooler

Make me front faced

Make me younger

Make me more man

Correcting the Mistakes Made by GAN

Demo Video for Semantic Face Editing with InterFaceGAN

Code for InterfaceGAN

- <u>https://github.com/genforce/interfacegan</u>
- Colab live demo: <u>https://colab.research.google.com/github/genforce/interfacegan/blo</u> <u>b/master/docs/InterFaceGAN.ipynb</u>

Outline

- Introduction: from recognition to recreation
- Overview of the generative models
- Understanding generative models
- Inverting images for real image editings

How to edit my own face? Make me cooler

Make me younger

My Profile photo

GAN-Synthesized Image

GAN Inversion: Inverting Real Face to Latent Code

x = G(z)

Real Image X

GAN Inversion

GAN Inversion

Reconstructed face

GAN inversion is challenging!

Different initialization

 $\mathbf{z}^* = \arg\min_{\mathbf{z}} ||G(\mathbf{z}) - \mathbf{x}||^2$

Inversion

Abdal, et al. Image2StyleGAN: How to Embed Images Into the StyleGAN. ICCV'19

Image2StyleGAN: it works to some degree

Target

Inversion from single code 512 dimensions

Inversion from Image2StyleGAN 14x512 dimensions

But it seems overfitting the target image

* Generator is trained on human faces only

But it seems overfitting the target image

Inverted codes don't very well support the manipulation

Target

Image2StyleGAN

Add smile

Add glasses

Issue: resulting code might be out of the original latent domain

Out-of-Domain Inversion

GAN lacks the inference ability:

Many recent works on adding encoder to GAN generator:

BigBiGAN (NeurIPS'19)

Input

Reconstruction

Adversarial Latent Autoencoders (CVPR'20)

Input

Reconstruction

In-Domain Inversion (ECCV'20)

Input

Reconstruction

Encoder-constrained Optimization

In-Domain Inversion

$$\mathbf{z}^* = \arg\min_{\mathbf{z}} ||G(\mathbf{z}) - \mathbf{x}||^2 + ||\mathbf{z} - E(G(\mathbf{z}))||^2$$

Jiapeng Zhu, Yujun Shen, Deli Zhao, Bolei Zhou. In-Domain GAN Inversion for Real Image Editing. ECCV 2020

Comparison with Image2StyleGAN

Image2StyleGAN

Target

Reconstruction

Decrease age

Add smile

Add glasses

Demo of image manipulation

Demo of image interpolation

Semantic Diffusion

Background

 $\mathbf{z}^* = \operatorname{argmax}_{\mathbf{z}} ||\mathbf{m} \bullet G(\mathbf{z}) - \mathbf{m} \bullet \mathbf{x}||^2 + ||\mathbf{z} - E(G(\mathbf{z}))||^2$

Foreground

Copy and paste

Live Demo: Try your own image!

• Colab:

https://colab.research.google.com/github/genforce/idinvert_pytor ch/blob/master/docs/Idinvert.ipynb

Two Minute Papers Channel's report

This AI Creates An Adorable Baby DiCaprio Image!

Two Minute Papers 🛇 19K views

Check out Weights & Biases and sign up for a free demo here: https://www.wandb.com/papers
Their report for this paper is available here: https://wandb.ai/wandb/in-domain-gan/reports/...

https://www.youtube.com/watch?v=2qMw8sOsNg0

Scene Harmonization

Copy and paste a new bed

Copy and paste a new window

Masked optimization

Masked optimization -

Unsupervised Discovery of Steerable Dimensions

Generative model for cartoons

Generative model for cars

Unsupervised Discovery of Steerable Dimensions

Affine transform in the first layer of generator:

$$G_1(z) \triangleq y = Az + b$$

Linear manipulation:

$$\Delta y = G_1(z+n) - G_1(z) = An$$

Unsupervised learning objective: maximize the feature variations:

$$n^* = \operatorname{argmax}_{\{n \in \mathbb{R}^d: n^T n = 1\}} ||An||_2^2$$

Solving the eigenvectors:
$$A^T A n = \lambda n$$

Shen and Zhou. Closed-Form Factorization of Latent Semantics in GANs. CVPR'21

https://genforce.github.io/sefa/

Steerable Dimensions in Generative Model of Cats

Head pose

Body pose

Zoom-in and out

Steerable Dimensions in Generative Model of Animes

Mouth

Head pose

Eye size

demo video

SeFa: Closed-Form Factorization of Latent Semantics in GANs

https://genforce.github.io/sefa/

Live Demo: SeFa

- Interface: 192.168.72.172:1234 (to be open by TA)
- Google Colab: <u>https://colab.research.google.com/github/genforce/sefa/blob/master/docs/SeFa.ipynb</u>
- Open-source code: <u>https://github.com/genforce/sefa</u>
Deep Generative Prior for Image Processing

(f) Semantic image manipulation

Jinjin Gu, Yujun Shen, Bolei Zhou. CVPR'20

(e) Image inpainting

(d) Image reconstruction

Deep Generative Prior for Image Processing

Inversion loss

 $\{z_n^*\}_{n=1}^N, \{\alpha_n^*\}_{n=1}^N = \operatorname*{arg\,min}_{\{z_n\}_{n=1}^N, \{\alpha_n\}_{n=1}^N} L(x^{inv}, x)$

Super-resolution loss: $L_{SR} = L(down(x^{inv}), I_{LR})$

Colorization loss: $L_{color} = L(gray(x^{inv}), I_{gray})$

Inpainting loss: $L_{inp} = L(x^{inv} \circ \mathbf{m}, I_{ori} \circ \mathbf{m})$

Jinjin Gu, Yujun Shen, Bolei Zhou. CVPR'20

Image inpainting

Image colorization

Image denoising

A recent survey paper on GAN inversion

<u>https://arxiv.org/pdf/2101.05278.pdf</u>

GAN Inversion: A Survey

Weihao Xia, Yulun Zhang, Yujiu Yang*, Jing-Hao Xue, Bolei Zhou*, Ming-Hsuan Yang*

Abstract—GAN inversion aims to invert a given image back into the latent space of a pretrained GAN model, for the image to be faithfully reconstructed from the inverted code by the generator. As an emerging technique to bridge the real and fake image domains, GAN inversion plays an essential role in enabling the pretrained GAN models such as StyleGAN and BigGAN to be used for real image editing applications. Meanwhile, GAN inversion also provides insights on the interpretation of GAN's latent space and how the realistic images can be generated. In this paper, we provide an overview of GAN inversion with a focus on its recent algorithms and applications. We cover important techniques of GAN inversion and their applications to image restoration and image manipulation. We further elaborate on some trends and challenges for future directions. A curated list of GAN inversion methods, datasets, and other related information can be found at github.com/weihaox/awesome-gan-inversion.

Index Terms—Generative Adversarial Networks, Interpretable Machine Learning, Image Reconstruction, Image Manipulation

Other generative models

- Normalizing flows
- Energy-based models
- Image2Image translation

Image to Image Translation

noise2image

image2image

Image to Image Translation

Isola et al. Image-to-Image Translation with Conditional Adversarial Nets. CVPR'17

$\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$

fake

real

loss function:

Input

Output

Ground-truth

data downloaded from the Google Map

Isola et al. Image-to-Image Translation with Conditional Adversarial Nets. CVPR'17

Input

GAN loss

More structured loss

Amazing applications based on Pix2Pix

#edges2cats [Chris Hesse]

https://phillipi.github.io/pix2pix/

Amazing applications based on Pix2Pix

#edges2cats

Christopher Hesse trained our model on converting edge maps to photos of cats, and included this in his interactive demo. Apparently, this is what the Internet wanted most, and #edges2cats briefly went viral. The above cats were designed by Vitaly Vidmirov (@vvid).

Alternative Face

Mario Klingemann used our code to translate the appearance of French singer Francoise Hardy onto Kellyanne Conway's infamous "alternative facts" interview. Interesting articles about it can be read here and here.

Person-to-Person

Brannon Dorsey recorded himself mimicking frames from a video of Ray Kurzweil giving a talk. He then used this data to train a Dorsey—Kurzweil translator, allowing him to become a kind of puppeter in control of Kurzweil's appearance.

Color palette completion

Colormind adapted our code to predict a complete 5-color palette given a subset of the palette as input. This application stretches the definition of what counts as "image-to-image translation" in an exciting way: if you can visualize your input/output data as images, then imageto-image methods are applicable! (not that this is necessarily the best choice of representation, just one to think about.)

Interactive Anime

Bertrand Gondouin trained our method to translate sketches—Pokemon, resulting in an interactive drawing tool.

Background masking

Kaihu Chen performed a number of interesting experiments using our method, including getting it to mask out the background of a portrait as shown above.

https://phillipi.github.io/pix2pix/

Unpaired data

Y

slide from Phillip Isola

Paired translation

Unpaired translation

["pix2pix", Isola, Zhu, Zhou, Efros, 2017]

slide from Phillip Isola

slide from Phillip Isola

Cycle Consistency

Cycle Consistency

$$\begin{aligned} \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) &= \mathbb{E}_{y \sim p_{\text{data}}(y)} [\log D_Y(y)] \\ &+ \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log(1 - D_Y(G(x)))], \\ \text{Our full objective is:} \\ \mathcal{L}_{\text{cyc}}(G, F) &= \mathbb{E}_{x \sim p_{\text{data}}(x)} [\|F(G(x)) - x\|_1] \\ &+ \mathbb{E}_{y \sim p_{\text{data}}(y)} [\|G(F(y)) - y\|_1]. \end{aligned}$$

$$\begin{aligned} \mathcal{L}_{(G, F, D_X, D_Y)} &= \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) \\ &+ \mathcal{L}_{\text{GAN}}(F, D_X, Y, X) \\ &+ \lambda \mathcal{L}_{\text{cyc}}(G, F), \end{aligned}$$

https://arxiv.org/pdf/1703.10593.pdf

Amazing applications based on CycleGAN

Check this out: https://junyanz.github.io/CycleGAN/

Summary

- Introduction: from recognition to recreation
- Overview of the generative models
- Understanding generative models
- Inverting images for real image editing
- Image2Image translation

Acknowledgement

GenForce Team at CUHK

Yujun Shen

Ceyuan Yang

Jiapeng Zhu

Yinghao Xu

Code and papers are at https://genforce.github.io/

Research Initiative on Generative Modeling

May Generative Force Be with You

GenForce Lib

Projects

Yujun Shen, Yinghao Xu, Ceyuan Yang, Jiapeng Zhu, Bolei Zhou *This is an efficient PyTorch library for deep generative modeling.* [Code] [Colab]

Generative Hierarchical Features from Synthesizing Images Yinghao Xu*, Yujun Shen*, Jiapeng Zhu, Ceyuan Yang, Bolei Zhou *arXiv.2007.10379 preprint* [Paper][Project Page][Code]

Closed-Form Factorization of Latent Semantics in GANs Yujun Shen, Bolei Zhou *arXiv.2007.06600 preprint* [Paper] [Project Page] [Code] [Demo Video]

InterFaceGAN: Interpreting the Disentangled Face Representation Learned by GANs Yujun Shen, Ceyuan Yang, Xiaoou Tang, Bolei Zhou IEEE Transactions on Pattern Recognition (TPAMI), Oct 2020 [Paper][Project Page][Code][Demo Video]

In-Domain GAN Inversion for Real Image Editing Jiapeng Zhu*, Yujun Shen*, Deli Zhao, Bolei Zhou *European Conference on Computer Vision (ECCV), 2020* [Paper] [Project Page] [Code] [Demo Video]